Federated and Transfer Learning: A Survey on Adversaries and Defense
Mechanisms
- URL: http://arxiv.org/abs/2207.02337v1
- Date: Tue, 5 Jul 2022 22:07:26 GMT
- Title: Federated and Transfer Learning: A Survey on Adversaries and Defense
Mechanisms
- Authors: Ehsan Hallaji, Roozbeh Razavi-Far, Mehrdad Saif
- Abstract summary: The main goal of this study is to uncover potential vulnerabilities and defense mechanisms that might compromise the privacy and performance of systems that use federated and transfer learning.
- Score: 4.5441516134546385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of federated learning has facilitated large-scale data exchange
amongst machine learning models while maintaining privacy. Despite its brief
history, federated learning is rapidly evolving to make wider use more
practical. One of the most significant advancements in this domain is the
incorporation of transfer learning into federated learning, which overcomes
fundamental constraints of primary federated learning, particularly in terms of
security. This chapter performs a comprehensive survey on the intersection of
federated and transfer learning from a security point of view. The main goal of
this study is to uncover potential vulnerabilities and defense mechanisms that
might compromise the privacy and performance of systems that use federated and
transfer learning.
Related papers
- Linkage on Security, Privacy and Fairness in Federated Learning: New Balances and New Perspectives [48.48294460952039]
This survey offers comprehensive descriptions of the privacy, security, and fairness issues in federated learning.
We contend that there exists a trade-off between privacy and fairness and between security and sharing.
arXiv Detail & Related papers (2024-06-16T10:31:45Z) - Federated Learning with Blockchain-Enhanced Machine Unlearning: A Trustworthy Approach [20.74679353443655]
We introduce a framework that melds blockchain with federated learning, thereby ensuring an immutable record of unlearning requests and actions.
Our key contributions encompass a certification mechanism for the unlearning process, the enhancement of data security and privacy, and the optimization of data management.
arXiv Detail & Related papers (2024-05-27T04:35:49Z) - Private Knowledge Sharing in Distributed Learning: A Survey [50.51431815732716]
The rise of Artificial Intelligence has revolutionized numerous industries and transformed the way society operates.
It is crucial to utilize information in learning processes that are either distributed or owned by different entities.
Modern data-driven services have been developed to integrate distributed knowledge entities into their outcomes.
arXiv Detail & Related papers (2024-02-08T07:18:23Z) - Decentralized Federated Learning: A Survey on Security and Privacy [15.790159174067174]
Federated learning has been rapidly evolving and gaining popularity in recent years due to its privacy-preserving features.
The exchange of model updates and gradients in this architecture provides new attack surfaces for malicious users.
Trustability and verifiability of decentralized federated learning are also considered in this study.
arXiv Detail & Related papers (2024-01-25T23:35:47Z) - Serverless Federated Learning with flwr-serverless [0.0]
We introduce textttflwr-serverless, a wrapper around the Flower Python package to allow for both synchronous and asynchronous federated learning.
Our approach to federated learning allows the process to run without a central server, which increases the domains of application and accessibility of its use.
arXiv Detail & Related papers (2023-10-23T19:49:59Z) - Systemization of Knowledge (SoK)- Cross Impact of Transfer Learning in Cybersecurity: Offensive, Defensive and Threat Intelligence Perspectives [25.181087776375914]
This paper presents a comprehensive survey of transfer learning applications in cybersecurity.
The survey highlights the significance of transfer learning in addressing critical issues in cybersecurity.
The paper identifies future research directions and challenges that require community attention.
arXiv Detail & Related papers (2023-09-12T00:26:38Z) - When Decentralized Optimization Meets Federated Learning [41.58479981773202]
Federated learning is a new learning paradigm for extracting knowledge from distributed data.
Most existing federated learning approaches concentrate on the centralized setting, which is vulnerable to a single-point failure.
An alternative strategy for addressing this issue is the decentralized communication topology.
arXiv Detail & Related papers (2023-06-05T03:51:14Z) - Transferability in Deep Learning: A Survey [80.67296873915176]
The ability to acquire and reuse knowledge is known as transferability in deep learning.
We present this survey to connect different isolated areas in deep learning with their relation to transferability.
We implement a benchmark and an open-source library, enabling a fair evaluation of deep learning methods in terms of transferability.
arXiv Detail & Related papers (2022-01-15T15:03:17Z) - Concept drift detection and adaptation for federated and continual
learning [55.41644538483948]
Smart devices can collect vast amounts of data from their environment.
This data is suitable for training machine learning models, which can significantly improve their behavior.
In this work, we present a new method, called Concept-Drift-Aware Federated Averaging.
arXiv Detail & Related papers (2021-05-27T17:01:58Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
Reinforcement learning is a learning paradigm for solving sequential decision-making problems.
Recent years have witnessed remarkable progress in reinforcement learning upon the fast development of deep neural networks.
transfer learning has arisen to tackle various challenges faced by reinforcement learning.
arXiv Detail & Related papers (2020-09-16T18:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.