Patch-wise Deep Metric Learning for Unsupervised Low-Dose CT Denoising
- URL: http://arxiv.org/abs/2207.02377v1
- Date: Wed, 6 Jul 2022 00:58:11 GMT
- Title: Patch-wise Deep Metric Learning for Unsupervised Low-Dose CT Denoising
- Authors: Chanyong Jung, Joonhyung Lee, Sunkyoung You, Jong Chul Ye
- Abstract summary: We propose a novel unsupervised learning approach for lowdose CT reconstruction using patch-wise deep metric learning.
The key idea is to learn embedding space by pulling the positive pairs of image patches which shares the same anatomical structure, and pushing the negative pairs which have same noise level each other.
Experimental results confirm that our deep metric learning plays a critical role in producing high quality denoised images without CT number shift.
- Score: 33.706959549595496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The acquisition conditions for low-dose and high-dose CT images are usually
different, so that the shifts in the CT numbers often occur. Accordingly,
unsupervised deep learning-based approaches, which learn the target image
distribution, often introduce CT number distortions and result in detrimental
effects in diagnostic performance. To address this, here we propose a novel
unsupervised learning approach for lowdose CT reconstruction using patch-wise
deep metric learning. The key idea is to learn embedding space by pulling the
positive pairs of image patches which shares the same anatomical structure, and
pushing the negative pairs which have same noise level each other. Thereby, the
network is trained to suppress the noise level, while retaining the original
global CT number distributions even after the image translation. Experimental
results confirm that our deep metric learning plays a critical role in
producing high quality denoised images without CT number shift.
Related papers
- WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
We propose a multi-view vertebra localization and identification from CT images.
We convert the 3D problem into a 2D localization and identification task on different views.
Our method can learn the multi-view global information naturally.
arXiv Detail & Related papers (2023-07-24T14:43:07Z) - QS-ADN: Quasi-Supervised Artifact Disentanglement Network for Low-Dose
CT Image Denoising by Local Similarity Among Unpaired Data [10.745277107045949]
This paper introduces a new learning mode, called quasi-supervised learning, to empower the ADN for LDCT image denoising.
The proposed method is different from (but compatible with) supervised and semi-supervised learning modes and can be easily implemented by modifying existing networks.
The experimental results show that the method is competitive with state-of-the-art methods in terms of noise suppression and contextual fidelity.
arXiv Detail & Related papers (2023-02-08T07:19:13Z) - Self Supervised Low Dose Computed Tomography Image Denoising Using
Invertible Network Exploiting Inter Slice Congruence [20.965610734723636]
This study proposes a novel method for self-supervised low-dose CT denoising to alleviate the requirement of paired LDCT and NDCT images.
We have trained an invertible neural network to minimize the pixel-based mean square distance between a noisy slice and the average of its two immediate adjacent noisy slices.
arXiv Detail & Related papers (2022-11-03T07:16:18Z) - PatchNR: Learning from Small Data by Patch Normalizing Flow
Regularization [57.37911115888587]
We introduce a regularizer for the variational modeling of inverse problems in imaging based on normalizing flows.
Our regularizer, called patchNR, involves a normalizing flow learned on patches of very few images.
arXiv Detail & Related papers (2022-05-24T12:14:26Z) - Total-Body Low-Dose CT Image Denoising using Prior Knowledge Transfer
Technique with Contrastive Regularization Mechanism [4.998352078907441]
Low radiation dose may result in increased noise and artifacts, which greatly affected the clinical diagnosis.
To obtain high-quality Total-body Low-dose CT (LDCT) images, previous deep-learning-based research work has introduced various network architectures.
In this paper, we propose a novel intra-task knowledge transfer method that leverages the distilled knowledge from NDCT images.
arXiv Detail & Related papers (2021-12-01T06:46:38Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Noise Conscious Training of Non Local Neural Network powered by Self
Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising [20.965610734723636]
Deep learning-based technique has emerged as a dominant method for low dose CT(LDCT) denoising.
In this study, we propose a novel convolutional module as the first attempt to utilize neighborhood similarity of CT images for denoising tasks.
Next, we moved towards the problem of non-stationarity of CT noise and introduced a new noise aware mean square error loss for LDCT denoising.
arXiv Detail & Related papers (2020-11-11T10:44:52Z) - Cascaded Convolutional Neural Networks with Perceptual Loss for Low Dose
CT Denoising [0.0]
Low Dose CT Denoising research aims to reduce the risks of radiation exposure to patients.
Recent approaches that use mean-squared-error (MSE) tend to over smooth the image resulting in loss of fine structural details in low contrast regions of the image.
We show that our method outperforms related works and more effectively reconstructs fine structural details in low contrast regions of the image.
arXiv Detail & Related papers (2020-06-26T00:35:26Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.