論文の概要: Swin Deformable Attention U-Net Transformer (SDAUT) for Explainable Fast
MRI
- arxiv url: http://arxiv.org/abs/2207.02390v1
- Date: Tue, 5 Jul 2022 15:56:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-07 13:18:23.017988
- Title: Swin Deformable Attention U-Net Transformer (SDAUT) for Explainable Fast
MRI
- Title(参考訳): 説明可能な高速MRIのためのスイニングデフォルマブルアテンションU-Net Transformer (SDAUT)
- Authors: Jiahao Huang, Xiaodan Xing, Zhifan Gao, Guang Yang
- Abstract要約: 高速MRIのためのトランスフォーマーアーキテクチャを提案する。
再構成モデルの説明可能性を理解するために,変形可能な注意を取り入れた。
提案手法は,説明可能性を明らかにしながら,ネットワークパラメータを少なくする。
- 参考スコア(独自算出の注目度): 3.2621521013133385
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fast MRI aims to reconstruct a high fidelity image from partially observed
measurements. Exuberant development in fast MRI using deep learning has been
witnessed recently. Meanwhile, novel deep learning paradigms, e.g., Transformer
based models, are fast-growing in natural language processing and promptly
developed for computer vision and medical image analysis due to their prominent
performance. Nevertheless, due to the complexity of the Transformer, the
application of fast MRI may not be straightforward. The main obstacle is the
computational cost of the self-attention layer, which is the core part of the
Transformer, can be expensive for high resolution MRI inputs. In this study, we
propose a new Transformer architecture for solving fast MRI that coupled
Shifted Windows Transformer with U-Net to reduce the network complexity. We
incorporate deformable attention to construe the explainability of our
reconstruction model. We empirically demonstrate that our method achieves
consistently superior performance on the fast MRI task. Besides, compared to
state-of-the-art Transformer models, our method has fewer network parameters
while revealing explainability. The code is publicly available at
https://github.com/ayanglab/SDAUT.
- Abstract(参考訳): 高速MRIは、部分的に観察された測定値から高忠実度画像を再構成することを目的としている。
近年,ディープラーニングを用いた高速MRIの開発が注目されている。
一方、トランスフォーマーベースのモデルのような新しいディープラーニングパラダイムは、自然言語処理において急速に成長し、コンピュータビジョンや医療画像解析のために急速に発展している。
しかし、Transformerの複雑さのため、高速MRIの応用は簡単ではないかもしれない。
主な障害は、トランスフォーマのコア部分であるセルフアテンション層の計算コストであり、高解像度mri入力には高価である。
そこで本研究では,高速mriによるシフト型windowsトランスフォーマーとu-netを結合し,ネットワークの複雑さを軽減する新しいトランスフォーマーアーキテクチャを提案する。
再構成モデルの説明可能性を理解するために変形可能な注意を組み込んだ。
我々は,この手法が高速MRIタスクにおいて一貫した優れた性能を実現することを実証的に実証した。
さらに,現状のトランスフォーマーモデルと比較して,本手法は説明可能性を示しながら,ネットワークパラメータが少ない。
コードはhttps://github.com/ayanglab/SDAUTで公開されている。
関連論文リスト
- Learning Dynamic MRI Reconstruction with Convolutional Network Assisted
Reconstruction Swin Transformer [0.7802769338493889]
本研究では、4次元MRIのためのRestruction Swin Transformer (RST) という新しいアーキテクチャを提案する。
RSTはビデオスウィントランスのバックボーン設計を継承し、画素の強度を回復するために新しい再構成ヘッドを導入した。
心臓4D MRデータセットの実験的結果は、RTTの優位性をさらに裏付けるものである。
論文 参考訳(メタデータ) (2023-09-19T00:42:45Z) - Cross-Attention of Disentangled Modalities for 3D Human Mesh Recovery
with Transformers [17.22112222736234]
トランスフォーマーエンコーダアーキテクチャは近年,モノキュラー3次元メッシュ再構築における最先端の成果を達成している。
メモリのオーバーヘッドが大きく、推論速度が遅いため、そのようなモデルを実用的な用途に展開することは困難である。
本稿では,FastMETROと呼ばれる単一画像からの3次元メッシュ再構成のためのトランスフォーマエンコーダデコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-27T22:54:09Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
我々はTransformerベースのMR画像超解像フレームワークを構築するための初期の取り組みを構築した。
我々は、高周波構造とモード間コンテキストを含む2つの領域先行について考察する。
我々は,Cross-modality High- frequency Transformer (Cohf-T)と呼ばれる新しいTransformerアーキテクチャを構築し,低解像度画像の超解像化を実現する。
論文 参考訳(メタデータ) (2022-03-29T07:56:55Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
マルチコントラスト・スーパーレゾリューション (SR) 再構成により, SR画像の高画質化が期待できる。
既存の手法では、これらの特徴をマッチングし、融合させる効果的なメカニズムが欠如している。
そこで本稿では,トランスフォーマーを利用したマルチスケールコンテキストマッチングとアグリゲーション技術を開発することで,これらの問題を解決する新しいネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-26T01:42:59Z) - HUMUS-Net: Hybrid unrolled multi-scale network architecture for
accelerated MRI reconstruction [38.0542877099235]
HUMUS-Netは、暗黙のバイアスと畳み込みの効率を、無ロールでマルチスケールのネットワークにおけるTransformerブロックのパワーと組み合わせたハイブリッドアーキテクチャである。
我々のネットワークは、最も広く公開されているMRIデータセットである高速MRIデータセット上で、新しい最先端技術を確立する。
論文 参考訳(メタデータ) (2022-03-15T19:26:29Z) - Fast MRI Reconstruction: How Powerful Transformers Are? [1.523157765626545]
k空間アンサンプと深層学習に基づく再構成による手法が、スキャンプロセスの高速化のために一般化されている。
特に、高速MRI再構成のために、GAN(Generative Adversarial Network)ベースのSwin Transformer(ST-GAN)を導入した。
異なるアンダーサンプリング条件からのMRI再建には,トランスフォーマーが有効であることを示す。
論文 参考訳(メタデータ) (2022-01-23T23:41:48Z) - UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation [6.646135062704341]
トランスフォーマーアーキテクチャは多くの自然言語処理タスクで成功している。
医用画像セグメンテーションを強化するために,自己意識を畳み込みニューラルネットワークに統合する強力なハイブリッドトランスフォーマーアーキテクチャUTNetを提案する。
論文 参考訳(メタデータ) (2021-07-02T00:56:27Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
医用画像分割タスクにおけるトランスフォーマティブネットワークアーキテクチャの利用可能性について検討する。
セルフアテンションモジュールに追加の制御機構を導入することで,既存のアーキテクチャを拡張するGated Axial-Attentionモデルを提案する。
医療画像上で効果的にモデルを訓練するために,さらにパフォーマンスを向上させる局所的グローバルトレーニング戦略 (logo) を提案する。
論文 参考訳(メタデータ) (2021-02-21T18:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。