論文の概要: Cross-Attention of Disentangled Modalities for 3D Human Mesh Recovery
with Transformers
- arxiv url: http://arxiv.org/abs/2207.13820v1
- Date: Wed, 27 Jul 2022 22:54:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-29 12:00:05.230931
- Title: Cross-Attention of Disentangled Modalities for 3D Human Mesh Recovery
with Transformers
- Title(参考訳): 変圧器を用いた3次元メッシュ復元のためのアンタングルモードの交差注意
- Authors: Junhyeong Cho, Kim Youwang, Tae-Hyun Oh
- Abstract要約: トランスフォーマーエンコーダアーキテクチャは近年,モノキュラー3次元メッシュ再構築における最先端の成果を達成している。
メモリのオーバーヘッドが大きく、推論速度が遅いため、そのようなモデルを実用的な用途に展開することは困難である。
本稿では,FastMETROと呼ばれる単一画像からの3次元メッシュ再構成のためのトランスフォーマエンコーダデコーダアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 17.22112222736234
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Transformer encoder architectures have recently achieved state-of-the-art
results on monocular 3D human mesh reconstruction, but they require a
substantial number of parameters and expensive computations. Due to the large
memory overhead and slow inference speed, it is difficult to deploy such models
for practical use. In this paper, we propose a novel transformer
encoder-decoder architecture for 3D human mesh reconstruction from a single
image, called FastMETRO. We identify the performance bottleneck in the
encoder-based transformers is caused by the token design which introduces high
complexity interactions among input tokens. We disentangle the interactions via
an encoder-decoder architecture, which allows our model to demand much fewer
parameters and shorter inference time. In addition, we impose the prior
knowledge of human body's morphological relationship via attention masking and
mesh upsampling operations, which leads to faster convergence with higher
accuracy. Our FastMETRO improves the Pareto-front of accuracy and efficiency,
and clearly outperforms image-based methods on Human3.6M and 3DPW. Furthermore,
we validate its generalizability on FreiHAND.
- Abstract(参考訳): トランスフォーマーエンコーダアーキテクチャは、最近、モノラルな3Dメッシュ再構成における最先端の結果を得たが、かなりの数のパラメータと高価な計算が必要である。
メモリのオーバーヘッドが大きく、推論速度が遅いため、そのようなモデルを実用的に展開することは困難である。
本稿では,FastMETROと呼ばれる単一画像からの3次元メッシュ再構成のためのトランスフォーマー・デコーダアーキテクチャを提案する。
入力トークン間の高複雑性な相互作用を導入するトークン設計によって生じるエンコーダベースのトランスフォーマーの性能ボトルネックを同定する。
私たちは、エンコーダ-デコーダアーキテクチャを介してインタラクションを分離し、モデルがはるかに少ないパラメータと短い推論時間を要求できるようにします。
さらに,アテンションマスキングとメッシュアップサンプリング操作により,人体の形態的関係の事前知識を課し,より高精度な収束を実現する。
我々のFastMETROは精度と効率のPareto-frontを改善し、Human3.6Mと3DPWで画像ベースの手法より明らかに優れている。
さらに,FreiHANDにおける一般化可能性を検証する。
関連論文リスト
- DeforHMR: Vision Transformer with Deformable Cross-Attention for 3D Human Mesh Recovery [2.1653492349540784]
DeforHMRは、人間のポーズパラメータの予測を強化するために設計された、新しい回帰ベースの単分子HMRフレームワークである。
DeforHMRは、トランスフォーマーデコーダ内の新しいクエリ非依存の変形可能なクロスアテンション機構を活用する。
広範に使用されている3D HMRベンチマーク3DPW と RICH 上で,単一フレーム回帰に基づく手法の最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-18T00:46:59Z) - Spiking Transformer Hardware Accelerators in 3D Integration [5.426379844893919]
スパイキングニューラルネットワーク(SNN)は計算の強力なモデルであり、リソース制約のあるエッジデバイスやニューロモルフィックハードウェアに適している。
近年出現したスパイク変圧器は、スパイク動作のバイナリ特性を生かして、性能と効率性が期待できる。
論文 参考訳(メタデータ) (2024-11-11T22:08:11Z) - SMPLer: Taming Transformers for Monocular 3D Human Shape and Pose Estimation [74.07836010698801]
この問題に対処するために,SMPLベースのトランスフォーマーフレームワーク(SMPLer)を提案する。
SMPLerは、切り離された注意操作とSMPLベースのターゲット表現の2つの重要な要素を組み込んでいる。
SMPLerの既存の3次元人体形状に対する効果とポーズ推定方法の実証実験を行った。
論文 参考訳(メタデータ) (2024-04-23T17:59:59Z) - Efficient Transformer Encoders for Mask2Former-style models [57.54752243522298]
ECO-M2Fは、入力画像上に条件付きエンコーダ内の隠蔽層数を自己選択する戦略である。
提案手法は、性能を維持しながら、予測エンコーダの計算コストを削減する。
アーキテクチャ構成では柔軟性があり、セグメンテーションタスクを超えてオブジェクト検出まで拡張できる。
論文 参考訳(メタデータ) (2024-04-23T17:26:34Z) - SegFormer3D: an Efficient Transformer for 3D Medical Image Segmentation [0.13654846342364302]
マルチスケールボリューム機能にまたがる注目度を算出する階層変換器であるSegFormer3Dを提案する。
SegFormer3Dは複雑なデコーダを避け、全MLPデコーダを使用して、ローカルおよびグローバルなアテンション機能を集約する。
広く使われている3つのデータセット上で、現在のSOTAモデルに対してSegFormer3Dをベンチマークする。
論文 参考訳(メタデータ) (2024-04-15T22:12:05Z) - Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D
Reconstruction with Transformers [37.14235383028582]
本稿では,フィードフォワード推論を用いて,単一画像から3次元モデルを効率よく生成する,一視点再構成のための新しい手法を提案する。
提案手法では,2つのトランスフォーマーネットワーク,すなわちポイントデコーダとトリプレーンデコーダを用いて,ハイブリッドトリプレーン・ガウス中間表現を用いて3次元オブジェクトを再構成する。
論文 参考訳(メタデータ) (2023-12-14T17:18:34Z) - UniTR: A Unified and Efficient Multi-Modal Transformer for
Bird's-Eye-View Representation [113.35352122662752]
屋外3次元知覚のためのマルチモーダルバックボーンUniTRを提案する。
UniTRは、統一されたモデリングと共有パラメータで様々なモダリティを処理する。
UniTRは基本的にタスクに依存しないバックボーンであり、異なる3D知覚タスクを自然にサポートする。
論文 参考訳(メタデータ) (2023-08-15T12:13:44Z) - TriPlaneNet: An Encoder for EG3D Inversion [1.9567015559455132]
NeRFをベースとしたGANは、人間の頭部の高分解能かつ高忠実な生成モデリングのための多くのアプローチを導入している。
2D GANインバージョンのための普遍的最適化に基づく手法の成功にもかかわらず、3D GANに適用された手法は、結果を新しい視点に外挿することができないかもしれない。
本稿では,EG3D生成モデルに提示された3面表現を直接利用することにより,両者のギャップを埋める高速な手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T17:56:20Z) - Augmented Shortcuts for Vision Transformers [49.70151144700589]
視覚変換器モデルにおけるショートカットと特徴の多様性の関係について検討する。
本稿では,元のショートカットに並列に学習可能なパラメータを追加経路を挿入する拡張ショートカット方式を提案する。
ベンチマークデータセットを用いて実験を行い,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2021-06-30T09:48:30Z) - Space-time Mixing Attention for Video Transformer [55.50839896863275]
本稿では,ビデオシーケンス内のフレーム数と線形にスケールする複雑性をビデオトランスフォーマーモデルとして提案する。
我々は,最も人気のあるビデオ認識データセットに対して,認識精度が非常に高いことを実証した。
論文 参考訳(メタデータ) (2021-06-10T17:59:14Z) - Thinking Fast and Slow: Efficient Text-to-Visual Retrieval with
Transformers [115.90778814368703]
目的は,大規模画像とビデオデータセットの言語検索である。
このタスクでは、独立してテキストとビジョンを共同埋め込み空間 a.k.a にマッピングする。
デュアルエンコーダは 検索スケールとして魅力的です
視覚テキスト変換器をクロスアテンションで使用する別のアプローチは、関節埋め込みよりも精度が大幅に向上する。
論文 参考訳(メタデータ) (2021-03-30T17:57:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。