A Deep Model for Partial Multi-Label Image Classification with Curriculum Based Disambiguation
- URL: http://arxiv.org/abs/2207.02410v2
- Date: Mon, 6 May 2024 07:33:24 GMT
- Title: A Deep Model for Partial Multi-Label Image Classification with Curriculum Based Disambiguation
- Authors: Feng Sun, Ming-Kun Xie, Sheng-Jun Huang,
- Abstract summary: We study the partial multi-label (PML) image classification problem.
Existing PML methods typically design a disambiguation strategy to filter out noisy labels.
We propose a deep model for PML to enhance the representation and discrimination ability.
- Score: 42.0958430465578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the partial multi-label (PML) image classification problem, where each image is annotated with a candidate label set consists of multiple relevant labels and other noisy labels. Existing PML methods typically design a disambiguation strategy to filter out noisy labels by utilizing prior knowledge with extra assumptions, which unfortunately is unavailable in many real tasks. Furthermore, because the objective function for disambiguation is usually elaborately designed on the whole training set, it can be hardly optimized in a deep model with SGD on mini-batches. In this paper, for the first time we propose a deep model for PML to enhance the representation and discrimination ability. On one hand, we propose a novel curriculum based disambiguation strategy to progressively identify ground-truth labels by incorporating the varied difficulties of different classes. On the other hand, a consistency regularization is introduced for model retraining to balance fitting identified easy labels and exploiting potential relevant labels. Extensive experimental results on the commonly used benchmark datasets show the proposed method significantly outperforms the SOTA methods.
Related papers
- Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
Partial Label Learning (PLL) is a type of weakly supervised learning where each training instance is assigned a set of candidate labels, but only one label is the ground-truth.
This is known as Unreliable Partial Label Learning (UPLL) that introduces an additional complexity due to the inherent unreliability and ambiguity of partial labels.
We propose the Unreliability-Robust Representation Learning framework (URRL) that leverages unreliability-robust contrastive learning to help the model fortify against unreliable partial labels effectively.
arXiv Detail & Related papers (2023-08-31T13:37:28Z) - Disambiguated Attention Embedding for Multi-Instance Partial-Label
Learning [68.56193228008466]
In many real-world tasks, the concerned objects can be represented as a multi-instance bag associated with a candidate label set.
Existing MIPL approach follows the instance-space paradigm by assigning augmented candidate label sets of bags to each instance and aggregating bag-level labels from instance-level labels.
We propose an intuitive algorithm named DEMIPL, i.e., Disambiguated attention Embedding for Multi-Instance Partial-Label learning.
arXiv Detail & Related papers (2023-05-26T13:25:17Z) - Deep Partial Multi-Label Learning with Graph Disambiguation [27.908565535292723]
We propose a novel deep Partial multi-Label model with grAph-disambIguatioN (PLAIN)
Specifically, we introduce the instance-level and label-level similarities to recover label confidences.
At each training epoch, labels are propagated on the instance and label graphs to produce relatively accurate pseudo-labels.
arXiv Detail & Related papers (2023-05-10T04:02:08Z) - Category-Adaptive Label Discovery and Noise Rejection for Multi-label
Image Recognition with Partial Positive Labels [78.88007892742438]
Training multi-label models with partial positive labels (MLR-PPL) attracts increasing attention.
Previous works regard unknown labels as negative and adopt traditional MLR algorithms.
We propose to explore semantic correlation among different images to facilitate the MLR-PPL task.
arXiv Detail & Related papers (2022-11-15T02:11:20Z) - Meta Objective Guided Disambiguation for Partial Label Learning [44.05801303440139]
We propose a novel framework for partial label learning with meta objective guided disambiguation (MoGD)
MoGD aims to recover the ground-truth label from candidate labels set by solving a meta objective on a small validation set.
The proposed method can be easily implemented by using various deep networks with the ordinary SGD.
arXiv Detail & Related papers (2022-08-26T06:48:01Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
We investigate single-positive multi-label learning (SPMLL) where each example is annotated with only one relevant label.
A novel method named proposed, i.e., Single-positive MultI-label learning with Label Enhancement, is proposed.
Experiments on benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-06-01T14:26:30Z) - Meta-Learning for Multi-Label Few-Shot Classification [38.222736913855115]
This work targets the problem of multi-label meta-learning, where a model learns to predict multiple labels within a query.
We introduce a neural module to estimate the label count of a given sample by exploiting the relational inference.
Overall, our thorough experiments suggest that the proposed label-propagation algorithm in conjunction with the neural label count module (NLC) shall be considered as the method of choice.
arXiv Detail & Related papers (2021-10-26T08:47:48Z) - Active Learning in Incomplete Label Multiple Instance Multiple Label
Learning [17.5720245903743]
We propose a novel bag-class pair based approach for active learning in the MIML setting.
Our approach is based on a discriminative graphical model with efficient and exact inference.
arXiv Detail & Related papers (2021-07-22T17:01:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.