Fisher zeroes and the fluctuations of the spectral form factor of
chaotic systems
- URL: http://arxiv.org/abs/2207.02473v3
- Date: Wed, 20 Sep 2023 19:54:25 GMT
- Title: Fisher zeroes and the fluctuations of the spectral form factor of
chaotic systems
- Authors: Guy Bunin, Laura Foini, Jorge Kurchan
- Abstract summary: We study a modified model of random energy levels in which we introduce level repulsion.
We also check that the mechanism giving rise to spikes is the same in the SYK model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The spectral form factor of quantum chaotic systems has the familiar `ramp
$+$ plateau' form. Techniques to determine its form in the semiclassical or the
thermodynamic limit have been devised, in both cases based on the average over
an energy range or an ensemble of systems. For a single instance, fluctuations
are large, do not go away in the limit, and depend on the element of the
ensemble itself, thus seeming to question the whole procedure. Considered as
the modulus of a partition function in complex inverse temperature
$\beta_R+i\beta_I$ ($\beta_I \equiv \tau$ the time), the spectral factor has
regions of Fisher zeroes, the analogue of Yang-Lee zeroes for the complex
temperature plane. The large spikes in the spectral factor are in fact a
consequence of near-misses of the line parametrized by $\beta_I$ to these
zeroes. The largest spikes are indeed extensive and extremely sensitive to
details, but we show that they are both exponentially rare and exponentially
thin. Motivated by this, and inspired by the work of Derrida on the Random
Energy Model, we study here a modified model of random energy levels in which
we introduce level repulsion. We also check that the mechanism giving rise to
spikes is the same in the SYK model.
Related papers
- Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Symmetry shapes thermodynamics of macroscopic quantum systems [0.0]
We show that the entropy of a system can be described in terms of group-theoretical quantities.
We apply our technique to generic $N$ identical interacting $d$-level quantum systems.
arXiv Detail & Related papers (2024-02-06T18:13:18Z) - Theory of robust quantum many-body scars in long-range interacting systems [0.0]
Quantum many-body scars (QMBS) are exceptional energy eigenstates of quantum many-body systems.
We show that long-range interacting quantum spin systems generically host robust QMBS.
Our theory unveils the stability mechanism of such QMBS for arbitrary system size.
arXiv Detail & Related papers (2023-09-21T22:00:40Z) - Entanglement Entropy in Ground States of Long-Range Fermionic Systems [0.0]
We study the scaling of ground state entanglement entropy of various free fermionic models on one dimensional lattices.
We ask if there exists a common $alpha_c$ across different systems governing the transition to area law scaling found in local systems.
arXiv Detail & Related papers (2023-02-13T23:08:01Z) - Universal features of entanglement entropy in the honeycomb Hubbard
model [44.99833362998488]
This paper introduces a new method to compute the R'enyi entanglement entropy in auxiliary-field quantum Monte Carlo simulations.
We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions.
arXiv Detail & Related papers (2022-11-08T15:52:16Z) - Thermodynamics and criticality of su($m$) spin chains of Haldane-Shastry
type [0.0]
We study the thermodynamics and critical behavior of su($m$) spin chains of Haldane-Shastry type at zero chemical potential.
We derive explicit formulas for the energy, entropy and specific heat per spin.
arXiv Detail & Related papers (2022-08-08T09:52:37Z) - Universal thermodynamics of an SU($N$) Fermi-Hubbard Model [0.0]
We numerically calculate the thermodynamics of the SU($N$) FHM in the two-dimensional square lattice near densities of one particle per site.
We find that for temperatures above the superexchange energy, where the correlation length is short, the energy, number of on-site pairs, and kinetic energy are universal functions of $N$.
arXiv Detail & Related papers (2021-08-09T16:25:33Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Subsystem R\'enyi Entropy of Thermal Ensembles for SYK-like models [20.29920872216941]
The Sachdev-Ye-Kitaev model is an $N$-modes fermionic model with infinite range random interactions.
We study the thermal R'enyi entropy for a subsystem of the SYK model using the path-integral formalism in the large-$N$ limit.
arXiv Detail & Related papers (2020-03-21T23:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.