Leveraging Hypernetworks and Learnable Kernels for Consumer Energy Forecasting Across Diverse Consumer Types
- URL: http://arxiv.org/abs/2502.05104v1
- Date: Fri, 07 Feb 2025 17:25:54 GMT
- Title: Leveraging Hypernetworks and Learnable Kernels for Consumer Energy Forecasting Across Diverse Consumer Types
- Authors: Muhammad Umair Danish, Katarina Grolinger,
- Abstract summary: This paper proposes a consumer energy forecasting strategy that leverages hypernetworks for improved modeling of complex patterns applicable across a diversity of consumers.
The proposed HyperEnergy was evaluated on diverse consumers including, student residences, detached homes, a home with electric vehicle charging, and a townhouse.
Across all consumer types, HyperEnergy consistently outperformed 10 other techniques, including state-of-the-art models such as LSTM, AttentionLSTM, and transformer.
- Score: 0.9208007322096533
- License:
- Abstract: Consumer energy forecasting is essential for managing energy consumption and planning, directly influencing operational efficiency, cost reduction, personalized energy management, and sustainability efforts. In recent years, deep learning techniques, especially LSTMs and transformers, have been greatly successful in the field of energy consumption forecasting. Nevertheless, these techniques have difficulties in capturing complex and sudden variations, and, moreover, they are commonly examined only on a specific type of consumer (e.g., only offices, only schools). Consequently, this paper proposes HyperEnergy, a consumer energy forecasting strategy that leverages hypernetworks for improved modeling of complex patterns applicable across a diversity of consumers. Hypernetwork is responsible for predicting the parameters of the primary prediction network, in our case LSTM. A learnable adaptable kernel, comprised of polynomial and radial basis function kernels, is incorporated to enhance performance. The proposed HyperEnergy was evaluated on diverse consumers including, student residences, detached homes, a home with electric vehicle charging, and a townhouse. Across all consumer types, HyperEnergy consistently outperformed 10 other techniques, including state-of-the-art models such as LSTM, AttentionLSTM, and transformer.
Related papers
- THOR: A Generic Energy Estimation Approach for On-Device Training [34.57867978862375]
THOR is a generic approach for energy consumption estimation in deep neural network (DNN) training.
We conduct extensive experiments with various types of models across different real-world platforms.
The results demonstrate that THOR has effectively reduced the Mean Absolute Percentage Error (MAPE) by up to 30%.
arXiv Detail & Related papers (2025-01-27T03:29:02Z) - Just In Time Transformers [2.7350304370706797]
JITtrans is a novel transformer deep learning model that significantly improves energy consumption forecasting accuracy.
Our findings highlight the potential of advanced predictive technologies to revolutionize energy management and advance sustainable power systems.
arXiv Detail & Related papers (2024-10-22T10:33:00Z) - Exploring the Privacy-Energy Consumption Tradeoff for Split Federated Learning [51.02352381270177]
Split Federated Learning (SFL) has recently emerged as a promising distributed learning technology.
The choice of the cut layer in SFL can have a substantial impact on the energy consumption of clients and their privacy.
This article provides a comprehensive overview of the SFL process and thoroughly analyze energy consumption and privacy.
arXiv Detail & Related papers (2023-11-15T23:23:42Z) - Empowering Distributed Solutions in Renewable Energy Systems and Grid
Optimization [3.8979646385036175]
Machine learning (ML) advancements play a crucial role in empowering renewable energy sources and improving grid management.
The incorporation of big data and ML into smart grids offers several advantages, including heightened energy efficiency.
However, challenges like handling large data volumes, ensuring cybersecurity, and obtaining specialized expertise must be addressed.
arXiv Detail & Related papers (2023-10-24T02:45:16Z) - Interpretable Deep Reinforcement Learning for Optimizing Heterogeneous
Energy Storage Systems [11.03157076666012]
Energy storage systems (ESS) are pivotal component in the energy market, serving as both energy suppliers and consumers.
To enhance ESS flexibility within the energy market, a heterogeneous photovoltaic-ESS (PV-ESS) is proposed.
We develop a comprehensive cost function that takes into account degradation, capital, and operation/maintenance costs to reflect real-world scenarios.
arXiv Detail & Related papers (2023-10-20T02:26:17Z) - On Feature Diversity in Energy-based Models [98.78384185493624]
An energy-based model (EBM) is typically formed of inner-model(s) that learn a combination of the different features to generate an energy mapping for each input configuration.
We extend the probably approximately correct (PAC) theory of EBMs and analyze the effect of redundancy reduction on the performance of EBMs.
arXiv Detail & Related papers (2023-06-02T12:30:42Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Cascaded Deep Hybrid Models for Multistep Household Energy Consumption
Forecasting [5.478764356647437]
This study introduces two hybrid cascaded models for forecasting multistep household power consumption in different resolutions.
The proposed hybrid models achieve superior prediction performance compared to the existing multistep power consumption prediction methods.
arXiv Detail & Related papers (2022-07-06T11:02:23Z) - Demand Responsive Dynamic Pricing Framework for Prosumer Dominated
Microgrids using Multiagent Reinforcement Learning [59.28219519916883]
This paper proposes a new multiagent Reinforcement Learning based decision-making environment for implementing a Real-Time Pricing (RTP) DR technique in a prosumer dominated microgrid.
The proposed technique addresses several shortcomings common to traditional DR methods and provides significant economic benefits to the grid operator and prosumers.
arXiv Detail & Related papers (2020-09-23T01:44:57Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.