Histopathology DatasetGAN: Synthesizing Large-Resolution Histopathology
Datasets
- URL: http://arxiv.org/abs/2207.02712v1
- Date: Wed, 6 Jul 2022 14:33:50 GMT
- Title: Histopathology DatasetGAN: Synthesizing Large-Resolution Histopathology
Datasets
- Authors: S. A. Rizvi, P. Cicalese, S. V. Seshan, S. Sciascia, J. U.Becker, and
H.V. Nguyen
- Abstract summary: Histopathology datasetGAN (HDGAN) is a framework for image generation and segmentation that scales well to large-resolution histopathology images.
We make several adaptations from the original framework, including updating the generative backbone, selectively extracting latent features from the generator, and switching to memory-mapped arrays.
We evaluate HDGAN on a thrombotic microangiopathy high-resolution tile dataset, demonstrating strong performance on the high-resolution image-annotation generation task.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised learning (SSL) methods are enabling an increasing number of
deep learning models to be trained on image datasets in domains where labels
are difficult to obtain. These methods, however, struggle to scale to the high
resolution of medical imaging datasets, where they are critical for achieving
good generalization on label-scarce medical image datasets. In this work, we
propose the Histopathology DatasetGAN (HDGAN) framework, an extension of the
DatasetGAN semi-supervised framework for image generation and segmentation that
scales well to large-resolution histopathology images. We make several
adaptations from the original framework, including updating the generative
backbone, selectively extracting latent features from the generator, and
switching to memory-mapped arrays. These changes reduce the memory consumption
of the framework, improving its applicability to medical imaging domains. We
evaluate HDGAN on a thrombotic microangiopathy high-resolution tile dataset,
demonstrating strong performance on the high-resolution image-annotation
generation task. We hope that this work enables more application of deep
learning models to medical datasets, in addition to encouraging more
exploration of self-supervised frameworks within the medical imaging domain.
Related papers
- Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation [3.7274206780843477]
We introduce a robust and versatile framework that combines AI and crowdsourcing to improve the quality and quantity of medical image datasets.
Our approach utilise a user-friendly online platform that enables a diverse group of crowd annotators to label medical images efficiently.
We employ pix2pixGAN, a generative AI model, to expand the training dataset with synthetic images that capture realistic morphological features.
arXiv Detail & Related papers (2024-09-04T21:22:54Z) - MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions [0.13108652488669734]
integration of neural-network-based systems into clinical practice is limited by challenges related to domain generalization and robustness.
We create and open-source MedMNIST-C, a benchmark dataset based on the MedMNIST+ collection covering 12 datasets and 9 imaging modalities.
arXiv Detail & Related papers (2024-06-25T13:20:39Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
We propose an end-to-end hybrid architecture for medical image segmentation.
We use Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images.
Our architecture operates on a slice-by-slice basis to segment 3D volumes, capitilizing on the richly augmented dataset.
arXiv Detail & Related papers (2024-06-17T15:42:08Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Enhancing MR Image Segmentation with Realistic Adversarial Data
Augmentation [17.539828821476224]
We propose an adversarial data augmentation approach to improve the efficiency in utilizing training data.
We present a generic task-driven learning framework, which jointly optimize a data augmentation model and a segmentation network during training.
The proposed adversarial data augmentation does not rely on generative networks and can be used as a plug-in module in general segmentation networks.
arXiv Detail & Related papers (2021-08-07T11:32:37Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
We propose an adversarial data augmentation method for training neural networks for medical image segmentation.
Our model generates plausible and realistic signal corruptions, which models the intensity inhomogeneities caused by a common type of artefacts in MR imaging: bias field.
We show that such an approach can improve the ability generalization and robustness of models as well as provide significant improvements in low-data scenarios.
arXiv Detail & Related papers (2020-06-23T20:43:18Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.