論文の概要: Astroconformer: Inferring Surface Gravity of Stars from Stellar Light
Curves with Transformer
- arxiv url: http://arxiv.org/abs/2207.02787v1
- Date: Wed, 6 Jul 2022 16:22:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-07 15:03:01.075831
- Title: Astroconformer: Inferring Surface Gravity of Stars from Stellar Light
Curves with Transformer
- Title(参考訳): アストロコンフォーマー:変圧器付きステラー光曲線から星の表面重力を推定する
- Authors: Jiashu Pan, Yuan-Sen Ting and Jie Yu
- Abstract要約: 我々は、ケプラーミッションから恒星の光曲線を分析するトランスフォーマーベースのモデルであるAstroconformerを紹介する。
我々はアストラコンフォーマーが恒星表面重力を教師付きタスクとして強く推測できることを実証した。
また, この手法は, ルービン天文台からのカデンス光曲線の分離に応用可能であることを示す。
- 参考スコア(独自算出の注目度): 1.122225892380515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Astroconformer, a Transformer-based model to analyze stellar
light curves from the Kepler mission. We demonstrate that Astrconformer can
robustly infer the stellar surface gravity as a supervised task. Importantly,
as Transformer captures long-range information in the time series, it
outperforms the state-of-the-art data-driven method in the field, and the
critical role of self-attention is proved through ablation experiments.
Furthermore, the attention map from Astroconformer exemplifies the long-range
correlation information learned by the model, leading to a more interpretable
deep learning approach for asteroseismology. Besides data from Kepler, we also
show that the method can generalize to sparse cadence light curves from the
Rubin Observatory, paving the way for the new era of asteroseismology,
harnessing information from long-cadence ground-based observations.
- Abstract(参考訳): 我々は、ケプラーミッションの恒星の光曲線を分析するトランスフォーマモデルであるastroconformerを紹介する。
astrconformerは、恒星表面重力を教師ありタスクとしてロバストに推測できることを実証する。
重要なことに、トランスフォーマーは時系列で長距離情報をキャプチャするので、フィールドにおける最先端のデータ駆動方式よりも優れており、アブレーション実験によって自己照査の重要な役割が証明される。
さらに、astroconformerの注意マップは、モデルによって学習された長距離相関情報を例示し、より解釈可能なアステローシス学の深層学習アプローチへと繋がる。
ケプラーのデータに加え、この手法はルービン天文台のカドレンス光曲線を一般化し、長期間の地上観測からの情報を活用して、新時代のアステロジストロジーの道を開くことも示している。
関連論文リスト
- Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
近似を行なわずに1秒で完全なBNS推論を行う機械学習フレームワークを提案する。
本手法は, (i) 合併前の正確な局所化を提供することにより, (i) 近似低遅延法と比較して, (ii) 局所化精度を$sim30%$で改善すること, (iii) 光度距離, 傾斜, 質量に関する詳細な情報を提供することにより, (i) マルチメーサの観測を向上する。
論文 参考訳(メタデータ) (2024-07-12T18:00:02Z) - Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
我々は、幅広いシミュレーションから有用な科学的洞察を得るための、新しい、偏見のない、機械学習に基づくアプローチについて説明する。
我々の概念は、低次元空間におけるデータのコンパクトな表現を学習するために非線形次元削減を適用することに基づいている。
本稿では、回転不変な超球面変動畳み込み自己エンコーダを用いて、潜時空間の電力分布を利用して、IllustrisTNGシミュレーションから銀河を訓練したプロトタイプを提案する。
論文 参考訳(メタデータ) (2024-06-06T07:34:58Z) - The Scaling Law in Stellar Light Curves [3.090476527764192]
本稿では,天文時系列データから学習する際の法則のスケーリングについて,自己監督的手法を用いて検討する。
自己教師付きトランスフォーマーモデルは,最先端の教師付き学習モデルと比較して,サンプル効率を3~10倍に向上させる。
本研究は,大規模自己回帰生成モデルを用いて恒星の光度曲線を解析するための基礎研究である。
論文 参考訳(メタデータ) (2024-05-27T13:31:03Z) - Reconstructing Atmospheric Parameters of Exoplanets Using Deep Learning [9.735933075230069]
本稿では,マルチモーダルアーキテクチャ内での深層学習と逆モデリング技術を組み合わせて,外惑星からの大気パラメータを抽出する多目的確率回帰手法を提案する。
我々の手法は計算の限界を克服し、以前の手法よりも優れており、惑星外大気の効率的な分析を可能にしている。
論文 参考訳(メタデータ) (2023-10-02T14:16:04Z) - Gradient-Based Feature Learning under Structured Data [57.76552698981579]
異方性設定では、一般的に使用される球面勾配力学は真の方向を回復できないことがある。
バッチ正規化を連想させる適切な重み正規化は、この問題を軽減することができることを示す。
特に、スパイクモデルの下では、勾配に基づくトレーニングのサンプルの複雑さは情報指数とは独立にできる。
論文 参考訳(メタデータ) (2023-09-07T16:55:50Z) - A Novel Application of Conditional Normalizing Flows: Stellar Age
Inference with Gyrochronology [0.0]
データ駆動型アプローチは、他の標準手法に匹敵する精度でジャイロロノロジー年代を制約できることを示す。
この研究は、ジャイロロノロジー星年代測定の適用性を拡大する確率論的データ駆動解の可能性を示す。
論文 参考訳(メタデータ) (2023-07-17T18:00:19Z) - Self-Supervised Learning for Modeling Gamma-ray Variability in Blazars [0.0]
ブラザーは活動的な銀河核であり、相対論的ジェットは地球に直接向けられている。
深層学習は、ガンマ線ブレザーの複雑な変動パターンの構造を明らかにするのに役立つ。
論文 参考訳(メタデータ) (2023-02-15T14:57:46Z) - Supernova Light Curves Approximation based on Neural Network Models [53.180678723280145]
光度データによる超新星の分類は、天文学におけるビッグデータのリアルタイム処理の出現によって課題となる。
近年の研究では、様々な機械学習モデルに基づく解の優れた品質が実証されている。
我々は,多層パーセプトロン(MLP),ベイジアンニューラルネットワーク(BNN),正規化フロー(NF)の単一光曲線観測への応用について検討した。
論文 参考訳(メタデータ) (2022-06-27T13:46:51Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
H2星間ガス中の小さな(あるいは離散的な)構造からの重要な点状成分がフェルミ・LATデータに存在する可能性がある。
深層学習は、これらの稀なH2プロキシによって追跡されるガンマ線放射を、データ豊富な領域において統計的に有意な範囲でモデル化するために効果的に利用される可能性がある。
論文 参考訳(メタデータ) (2022-06-06T18:00:07Z) - Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional
Analysis and Symbolic Regression [68.8204255655161]
ディープラーニング革命は、そのような分析結果を直接、データに適合するコンピュータアルゴリズムで導き出すための扉を開いた。
我々は、一般的なホットジュピター系外惑星の遷移半径の合成データにおける記号回帰の利用をうまく実証した。
前処理のステップとして,変数の無次元な組み合わせを特定するために次元解析を用いる。
論文 参考訳(メタデータ) (2021-12-22T00:52:56Z) - Latent World Models For Intrinsically Motivated Exploration [140.21871701134626]
画像に基づく観察のための自己教師付き表現学習法を提案する。
我々は、部分的に観測可能な環境の探索を導くために、エピソードおよび寿命の不確実性を考慮する。
論文 参考訳(メタデータ) (2020-10-05T19:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。