論文の概要: Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional
Analysis and Symbolic Regression
- arxiv url: http://arxiv.org/abs/2112.11600v1
- Date: Wed, 22 Dec 2021 00:52:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-23 22:50:35.310696
- Title: Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional
Analysis and Symbolic Regression
- Title(参考訳): 次元解析と記号回帰を用いた外惑星トランジット分光のモデル化
- Authors: Konstantin T. Matchev, Katia Matcheva and Alexander Roman
- Abstract要約: ディープラーニング革命は、そのような分析結果を直接、データに適合するコンピュータアルゴリズムで導き出すための扉を開いた。
我々は、一般的なホットジュピター系外惑星の遷移半径の合成データにおける記号回帰の利用をうまく実証した。
前処理のステップとして,変数の無次元な組み合わせを特定するために次元解析を用いる。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The physical characteristics and atmospheric chemical composition of newly
discovered exoplanets are often inferred from their transit spectra which are
obtained from complex numerical models of radiative transfer. Alternatively,
simple analytical expressions provide insightful physical intuition into the
relevant atmospheric processes. The deep learning revolution has opened the
door for deriving such analytical results directly with a computer algorithm
fitting to the data. As a proof of concept, we successfully demonstrate the use
of symbolic regression on synthetic data for the transit radii of generic hot
Jupiter exoplanets to derive a corresponding analytical formula. As a
preprocessing step, we use dimensional analysis to identify the relevant
dimensionless combinations of variables and reduce the number of independent
inputs, which improves the performance of the symbolic regression. The
dimensional analysis also allowed us to mathematically derive and properly
parametrize the most general family of degeneracies among the input atmospheric
parameters which affect the characterization of an exoplanet atmosphere through
transit spectroscopy.
- Abstract(参考訳): 新たに発見された太陽系外惑星の物理特性と大気化学組成は、放射移動の複雑な数値モデルから得られる遷移スペクトルからしばしば推測される。
あるいは、単純な分析式は関連する大気過程に対する洞察力のある物理的直感を与える。
ディープラーニング革命は、そのような分析結果をデータに適合するコンピュータアルゴリズムで直接導出するための扉を開いた。
概念実証として, 一般のホットジュピター系外惑星の遷移半径の合成データに記号回帰を用いることで, 対応する解析式を導出することに成功した。
プリプロセッシングのステップとして,変数の関連する次元のない組合せを次元解析により同定し,独立な入力数を減らすことにより,記号回帰の性能を向上させる。
この次元解析により、トランジット分光による太陽系外惑星大気のキャラクタリゼーションに影響を及ぼす入力大気パラメータのうち、最も一般的な退化系列を数学的に導出し、適切にパラメータ化することができる。
関連論文リスト
- Discovering symbolic expressions with parallelized tree search [59.92040079807524]
記号回帰は、データから簡潔で解釈可能な数学的表現を発見する能力のおかげで、科学研究において重要な役割を果たす。
既存のアルゴリズムは、複雑性の問題に対処する際の精度と効率の重要なボトルネックに直面してきた。
本稿では,限定データから汎用数学的表現を効率的に抽出する並列木探索(PTS)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-05T10:41:15Z) - Dynamical Regimes of Diffusion Models [14.797301819675454]
空間の次元とデータ数が大きい体制における生成拡散モデルについて検討する。
本研究は, 逆向き発生拡散過程における3つの異なる動的状態を明らかにするものである。
崩壊時間の次元とデータ数への依存性は、拡散モデルにおける次元の呪いの徹底的な評価を与える。
論文 参考訳(メタデータ) (2024-02-28T17:19:26Z) - Morphological Symmetries in Robotics [45.32599550966704]
形態的対称性は ロボットの形態の固有の特性です
これらの対称性は、ロボットの状態空間とセンサーの測定にまで拡張される。
データ駆動型手法では, 機械学習モデルのサンプル効率と一般化を, モルフォロジー対称性により向上させることができることを示す。
解析手法の文脈では、ロボットの力学を低次元独立力学の重ね合わせに分解するために抽象調和解析を用いる。
論文 参考訳(メタデータ) (2024-02-23T17:21:21Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Generative structured normalizing flow Gaussian processes applied to
spectroscopic data [4.0773490083614075]
物理科学では、限られた訓練データは将来の観測データを適切に特徴づけることができない。
特に外挿を依頼される場合、モデルが不確実性を適切に示すことは重要である。
火星探査機キュリオシティに搭載されたChemCam装置のレーザ誘起分解分光データに関する方法論を実証した。
論文 参考訳(メタデータ) (2022-12-14T23:57:46Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
我々は、通過する太陽系外惑星のスペクトルデータを解析するための教師なし手法に焦点をあてる。
スペクトルデータには、適切な低次元表現を要求する高い相関関係があることが示される。
主成分に基づく興味深い構造、すなわち、異なる化学状態に対応する明確に定義された分岐を明らかにする。
論文 参考訳(メタデータ) (2022-01-07T22:26:33Z) - Learning Transport Processes with Machine Intelligence [0.0]
本稿では,輸送プロセスの研究に対処するための機械学習に基づくアプローチを提案する。
提案モデルでは, 輸送過程の潜在表現を, 予想よりも根本真理にかなり近い位置で学習することができる。
論文 参考訳(メタデータ) (2021-09-27T14:49:22Z) - Inverse Learning of Symmetries [71.62109774068064]
2つの潜在部分空間からなるモデルで対称性変換を学ぶ。
我々のアプローチは、情報ボトルネックと連続的な相互情報正規化器の組み合わせに基づいています。
我々のモデルは, 人工的および分子的データセットにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-02-07T13:48:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。