Mitigating shortage of labeled data using clustering-based active
learning with diversity exploration
- URL: http://arxiv.org/abs/2207.02964v1
- Date: Wed, 6 Jul 2022 20:53:28 GMT
- Title: Mitigating shortage of labeled data using clustering-based active
learning with diversity exploration
- Authors: Xuyang Yan, Shabnam Nazmi, Biniam Gebru, Mohd Anwar, Abdollah
Homaifar, Mrinmoy Sarkar, and Kishor Datta Gupta
- Abstract summary: We propose a clustering-based active learning framework, namely Active Learning using a Clustering-based Sampling.
A bi-cluster boundary-based sample query procedure is introduced to improve the learning performance for classifying highly overlapped classes.
- Score: 3.312798619476657
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we proposed a new clustering-based active learning framework,
namely Active Learning using a Clustering-based Sampling (ALCS), to address the
shortage of labeled data. ALCS employs a density-based clustering approach to
explore the cluster structure from the data without requiring exhaustive
parameter tuning. A bi-cluster boundary-based sample query procedure is
introduced to improve the learning performance for classifying highly
overlapped classes. Additionally, we developed an effective diversity
exploration strategy to address the redundancy among queried samples. Our
experimental results justified the efficacy of the ALCS approach.
Related papers
- Adaptive Self-supervised Robust Clustering for Unstructured Data with Unknown Cluster Number [12.926206811876174]
We introduce a novel self-supervised deep clustering approach tailored for unstructured data, termed Adaptive Self-supervised Robust Clustering (ASRC)
ASRC adaptively learns the graph structure and edge weights to capture both local and global structural information.
ASRC even outperforms methods that rely on prior knowledge of the number of clusters, highlighting its effectiveness in addressing the challenges of clustering unstructured data.
arXiv Detail & Related papers (2024-07-29T15:51:09Z) - A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm.
In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries.
arXiv Detail & Related papers (2024-07-14T13:37:03Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Spectral Clustering in Convex and Constrained Settings [0.0]
We introduce a novel framework for seamlessly integrating pairwise constraints into semidefinite spectral clustering.
Our methodology systematically extends the capabilities of semidefinite spectral clustering to capture complex data structures.
arXiv Detail & Related papers (2024-04-03T18:50:14Z) - Deep Embedding Clustering Driven by Sample Stability [16.53706617383543]
We propose a deep embedding clustering algorithm driven by sample stability (DECS)
Specifically, we start by constructing the initial feature space with an autoencoder and then learn the cluster-oriented embedding feature constrained by sample stability.
The experimental results on five datasets illustrate that the proposed method achieves superior performance compared to state-of-the-art clustering approaches.
arXiv Detail & Related papers (2024-01-29T09:19:49Z) - Dynamic Clustering and Cluster Contrastive Learning for Unsupervised
Person Re-identification [29.167783500369442]
Unsupervised Re-ID methods aim at learning robust and discriminative features from unlabeled data.
We propose a dynamic clustering and cluster contrastive learning (DCCC) method.
Experiments on several widely used public datasets validate the effectiveness of our proposed DCCC.
arXiv Detail & Related papers (2023-03-13T01:56:53Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
The paper proposes a family of communication efficient methods for distributed learning in heterogeneous environments.
One-shot approach, based on local computations at the users and a clustering based aggregation step at the server is shown to provide strong learning guarantees.
For strongly convex problems it is shown that, as long as the number of data points per user is above a threshold, the proposed approach achieves order-optimal mean-squared error rates in terms of the sample size.
arXiv Detail & Related papers (2022-09-22T09:04:10Z) - Clustering Optimisation Method for Highly Connected Biological Data [0.0]
We show how a simple metric for connectivity clustering evaluation leads to an optimised segmentation of biological data.
The novelty of the work resides in the creation of a simple optimisation method for clustering crowded data.
arXiv Detail & Related papers (2022-08-08T17:33:32Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Progressive Cluster Purification for Unsupervised Feature Learning [48.87365358296371]
In unsupervised feature learning, sample specificity based methods ignore the inter-class information.
We propose a novel clustering based method, which excludes class inconsistent samples during progressive cluster formation.
Our approach, referred to as Progressive Cluster Purification (PCP), implements progressive clustering by gradually reducing the number of clusters during training.
arXiv Detail & Related papers (2020-07-06T08:11:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.