Motion induced excitation and electromagnetic radiation from an atom
facing a thin mirror
- URL: http://arxiv.org/abs/2207.02965v2
- Date: Thu, 25 Aug 2022 13:39:37 GMT
- Title: Motion induced excitation and electromagnetic radiation from an atom
facing a thin mirror
- Authors: C\'esar D. Fosco, Fernando C. Lombardo, and Francisco D. Mazzitelli
- Abstract summary: We evaluate the probability of (de-)excitation and photon emission from a neutral, moving, non-relativistic atom, coupled to a quantum electromagnetic field and in the presence of a thin, perfectly conducting plane ("mirror")
Results extend to a more realistic model, where the would-be electron was described by a scalar variable, coupled to an (also scalar) vacuum field.
- Score: 62.997667081978825
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We evaluate the probability of (de-)excitation and photon emission from a
neutral, moving, non-relativistic atom, coupled to the quantum electromagnetic
field and in the presence of a thin, perfectly conducting plane ("mirror").
These results extend, to a more realistic model, the ones we had presented for
a scalar model, where the would-be electron was described by a scalar variable,
coupled to an (also scalar) vacuum field. The latter was subjected to either
Dirichlet or Neumann conditions on a plane. In our evaluation of the
spontaneous emission rate produced when the accelerated atom is initially in an
excited state, we pay attention to its comparison with the somewhat opposite
situation, namely, an atom at rest facing a moving mirror.
Related papers
- Conversion of twistedness from light to atoms [0.0]
We show that in the inelastic collision of a photon and an atom, the twisted state of the photon is transferred to the center-of-mass state.
We also show that, depending on the experimental conditions, the twistedness of the photon is either transferred to the atomic center-of-mass quantum state or modifies the selection rule for the bound electron transition.
arXiv Detail & Related papers (2024-04-17T17:00:47Z) - Spontaneous Emission in the presence of Quantum Mirrors [0.0]
Arrays of atoms coupled to waveguides can behave as mirrors.
We analyze the spontaneous emission of an excited two-level atom in the presence of such a quantum mirror.
arXiv Detail & Related papers (2024-02-15T20:09:22Z) - Fast electrons interacting with chiral matter: mirror symmetry breaking
of quantum decoherence and lateral momentum transfer [91.3755431537592]
We show that matter chirality breaks mirror symmetry of scattered electrons quantum decoherence.
We also prove that mirror asymmetry also shows up in the distribution of the electron lateral momentum.
arXiv Detail & Related papers (2022-04-07T15:06:27Z) - Motion induced excitation and radiation from an atom facing a mirror [0.0]
We study quantum dissipative effects due to the non-relativistic, bounded, accelerated motion of a single neutral atom.
We compute the spontaneous emission rate of an oscillating atom that is initially in an excited state.
arXiv Detail & Related papers (2022-01-04T20:31:19Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Motion induced by asymmetric excitation of the quantum vacuum [62.997667081978825]
We study the effect of excitation of the quantum vacuum field induced by its coupling with a moving object.
In the present model, this excitation occurs asymmetrically on different sides of the object.
arXiv Detail & Related papers (2020-09-16T02:02:42Z) - Spontaneous emission of atomic dipoles near two-sided semi-transparent
mirrors [0.0]
We review the main properties of the quantised electromagnetic field near a semi-transparent mirror.
We emphasise that the local density of states of the electromagnetic field depends on the reflection rates of both sides of the mirror surface.
Although the effect which we describe here only holds for relatively short atom-mirror distances, it can aid the design of novel photonics devices.
arXiv Detail & Related papers (2020-04-22T23:39:13Z) - Shaking photons from the vacuum: acceleration radiation from vibrating
atoms [0.0]
We show that merely by shaking the atom, in simple harmonic motion, can have the same effect.
We propose a circuit-QED potential implementation that yields transition rates of $sim 10-4,rm Hz$, which may be detectable experimentally.
arXiv Detail & Related papers (2020-03-04T18:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.