Shaking photons from the vacuum: acceleration radiation from vibrating
atoms
- URL: http://arxiv.org/abs/2003.02258v1
- Date: Wed, 4 Mar 2020 18:56:46 GMT
- Title: Shaking photons from the vacuum: acceleration radiation from vibrating
atoms
- Authors: Brian P. Dolan, Aonghus Hunter-McCabe and Jason Twamley
- Abstract summary: We show that merely by shaking the atom, in simple harmonic motion, can have the same effect.
We propose a circuit-QED potential implementation that yields transition rates of $sim 10-4,rm Hz$, which may be detectable experimentally.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Acceleration radiation - or Unruh radiation - the thermal radiation observed
by an ever accelerating observer or detector, although having similarities to
Hawking radiation, so far has proved extremely challenging to observe
experimentally. One recent suggestion is that, in the presence of a mirror,
constant acceleration of an atom in its ground state can excite the atom while
at the same time cause it to emit a photon in an Unruh-type process. In this
work we show that merely by shaking the atom, in simple harmonic motion for
example, can have the same effect. We calculate the transition rate for this in
first order perturbation theory and consider harmonic motion of the atom in the
presence of a stationary mirror, or within a cavity or just in empty vacuum.
For the latter we propose a circuit-QED potential implementation that yields
transition rates of $\sim 10^{-4}\,{\rm Hz}$, which may be detectable
experimentally.
Related papers
- Motion induced excitation and electromagnetic radiation from an atom
facing a thin mirror [62.997667081978825]
We evaluate the probability of (de-)excitation and photon emission from a neutral, moving, non-relativistic atom, coupled to a quantum electromagnetic field and in the presence of a thin, perfectly conducting plane ("mirror")
Results extend to a more realistic model, where the would-be electron was described by a scalar variable, coupled to an (also scalar) vacuum field.
arXiv Detail & Related papers (2022-07-06T20:54:59Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Motion induced excitation and radiation from an atom facing a mirror [0.0]
We study quantum dissipative effects due to the non-relativistic, bounded, accelerated motion of a single neutral atom.
We compute the spontaneous emission rate of an oscillating atom that is initially in an excited state.
arXiv Detail & Related papers (2022-01-04T20:31:19Z) - Mechanical Oscillator Can Excite an Atom Through the Quantum Vacuum [6.89885350810882]
We consider a two-photon Rabi model with one of the cavity mirrors connected by a mechanical oscillator in strong-coupling regime.
We find that when the cavity is in its vacuum state, there exists a resonant coupling between the atom and mechanical oscillator.
Our theory reveals a kind of novel effective interaction and may find applications ranging from quantum information to nanotechnology.
arXiv Detail & Related papers (2021-06-27T11:35:03Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Light and Airy: a simple solution for relativistic quantum acceleration
radiation [0.0]
We study the quantum radiation of particle production by vacuum from an ultra-relativistic moving mirror (dynamical Casimir effect) solution.
The reality of the beta Bogoliubov coefficients is responsible for the simplicity, and the mirror is inertialally at the speed of light, with finite energy production.
arXiv Detail & Related papers (2021-01-26T06:02:43Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.