論文の概要: Multi-Label Learning to Rank through Multi-Objective Optimization
- arxiv url: http://arxiv.org/abs/2207.03060v2
- Date: Fri, 8 Jul 2022 16:30:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-11 11:08:52.057936
- Title: Multi-Label Learning to Rank through Multi-Objective Optimization
- Title(参考訳): 多目的最適化によるランキングのマルチラベル学習
- Authors: Debabrata Mahapatra, Chaosheng Dong, Yetian Chen, Deqiang Meng,
Michinari Momma
- Abstract要約: 近年,情報検索システムではランク付け技法の学習が至るところで行われている。
あいまいさを解決するためには、多くの関連基準を用いてモデルを訓練することが望ましい。
本稿では,ラベルからの情報を様々な方法で組み合わせて,目標間のトレードオフを特徴付ける,汎用的な枠組みを提案する。
- 参考スコア(独自算出の注目度): 9.099663022952496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning to Rank (LTR) technique is ubiquitous in the Information Retrieval
system nowadays, especially in the Search Ranking application. The query-item
relevance labels typically used to train the ranking model are often noisy
measurements of human behavior, e.g., product rating for product search. The
coarse measurements make the ground truth ranking non-unique with respect to a
single relevance criterion. To resolve ambiguity, it is desirable to train a
model using many relevance criteria, giving rise to Multi-Label LTR (MLLTR).
Moreover, it formulates multiple goals that may be conflicting yet important to
optimize for simultaneously, e.g., in product search, a ranking model can be
trained based on product quality and purchase likelihood to increase revenue.
In this research, we leverage the Multi-Objective Optimization (MOO) aspect of
the MLLTR problem and employ recently developed MOO algorithms to solve it.
Specifically, we propose a general framework where the information from labels
can be combined in a variety of ways to meaningfully characterize the trade-off
among the goals. Our framework allows for any gradient based MOO algorithm to
be used for solving the MLLTR problem. We test the proposed framework on two
publicly available LTR datasets and one e-commerce dataset to show its
efficacy.
- Abstract(参考訳): 近年,Learning to Rank(LTR)技術は情報検索システム,特に検索ランキングアプリケーションにおいて普及している。
ランキングモデルのトレーニングに一般的に使用されるクエリ項目関連ラベルは、製品検索の製品評価など、人の行動の騒々しい測定値であることが多い。
粗い測定は、単一の関連性基準に関して、基礎的な真理を不均一にランク付けする。
あいまいさを解決するためには、多くの関連基準を用いてモデルを訓練することが望ましいため、MLLTR(Multi-Label LTR)が生まれる。
さらに、製品検索において、製品の品質と購入可能性に基づいてランキングモデルを訓練し、収益を増加させるなど、同時に最適化する上で、相反するが重要な複数の目標を定式化する。
本研究では,MLLTR問題における多目的最適化(MOO)の側面を活用し,最近開発されたMOOアルゴリズムを用いて解く。
具体的には,ラベルからの情報を様々な方法で組み合わせて,目標間のトレードオフを有意義に特徴付ける,汎用的な枠組みを提案する。
我々のフレームワークは、任意の勾配に基づくMOOアルゴリズムを、MLLTR問題を解決するために使用できる。
提案フレームワークを2つのltrデータセットと1つのeコマースデータセット上でテストし,有効性を示す。
関連論文リスト
- REAL-MM-RAG: A Real-World Multi-Modal Retrieval Benchmark [16.55516587540082]
本稿では,リアルタイム検索に不可欠な4つの重要な特性に対処する自動生成ベンチマークREAL-MM-RAGを紹介する。
本稿では,キーワードマッチング以外のモデルのセマンティック理解を評価するために,クエリリフレッシングに基づく多言語レベルのスキームを提案する。
我々のベンチマークでは、特にテーブル重ドキュメントの扱いや、クエリ・リフレージングに対する堅牢性において、重要なモデルの弱点が明らかになっている。
論文 参考訳(メタデータ) (2025-02-17T22:10:47Z) - Ranked from Within: Ranking Large Multimodal Models for Visual Question Answering Without Labels [64.94853276821992]
大規模マルチモーダルモデル(LMM)は、様々なアプリケーションにまたがってますます展開されている。
従来の評価方法は、主にデータセット中心であり、固定されたラベル付きデータセットと教師付きメトリクスに依存している。
ソフトマックス確率などの不確実性信号を利用したLMMの教師なしモデルランキングについて検討する。
論文 参考訳(メタデータ) (2024-12-09T13:05:43Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
大きな言語モデル(LLM)は、その人気とは無関係に、アイテム間の意味的関係をキャプチャする能力を持つ。
LLMEmb(LLMEmb)は、LCMを利用してアイテム埋め込みを生成し、逐次レコメンダシステム(SRS)の性能を向上させる手法である。
論文 参考訳(メタデータ) (2024-09-30T03:59:06Z) - CROSS-JEM: Accurate and Efficient Cross-encoders for Short-text Ranking Tasks [12.045202648316678]
トランスフォーマーベースのランキングモデルは、そのようなタスクに対する最先端のアプローチである。
CROSS-JEM(Joint Efficient Modeling)を用いたクロスエンコーダを提案する。
CROSS-JEMは、トランスフォーマーベースのモデルでクエリの複数の項目を共同でスコアすることを可能にする。
最先端の精度を実現し、標準のクロスエンコーダよりも4倍低いランクのレイテンシを実現している。
論文 参考訳(メタデータ) (2024-09-15T17:05:35Z) - Large Language Models for Relevance Judgment in Product Search [48.56992980315751]
検索クエリに対する検索および再ランクされたアイテムの高い関連性は、製品検索の成功の土台である。
本稿では,大規模言語モデル(LLM)を活用して,クエリ・イテムペア(QIP)の関連判断を大規模に自動化する手法について述べる。
本研究は,製品検索における関連判断の自動化の分野への直接的な影響を示唆するものである。
論文 参考訳(メタデータ) (2024-06-01T00:52:41Z) - Large Language Models are Zero-Shot Rankers for Recommender Systems [76.02500186203929]
本研究では,レコメンダシステムのランキングモデルとして機能する大規模言語モデル(LLM)の能力を検討することを目的とする。
LLMにはゼロショットランキング能力があるが、歴史的相互作用の順序を理解するのに苦労していることを示す。
これらの問題は、特別に設計されたプロンプトとブートストラップ戦略によって緩和可能であることを実証する。
論文 参考訳(メタデータ) (2023-05-15T17:57:39Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
モデルに依存しないメタラーニング (MAML) が人気のある研究分野となっている。
既存のMAMLアルゴリズムは、イテレーション毎にメタモデルを更新するためにいくつかのタスクとデータポイントをサンプリングすることで、エピソードのアイデアに依存している。
本稿では,MAMLのメモリベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:47:58Z) - Sample-Rank: Weak Multi-Objective Recommendations Using Rejection
Sampling [0.5156484100374059]
本稿では,マルチゴールサンプリングとユーザ関連度(Sample-Rank)のランク付けによるマーケットプレースの多目的目標への推薦手法を提案する。
提案手法の新規性は,望まれるマルチゴール分布からサンプリングするMOレコメンデーション問題を低減し,プロダクションフレンドリーな学習-ランクモデルを構築することである。
論文 参考訳(メタデータ) (2020-08-24T09:17:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。