Word Embedding for Social Sciences: An Interdisciplinary Survey
- URL: http://arxiv.org/abs/2207.03086v2
- Date: Sat, 15 Jun 2024 06:59:28 GMT
- Title: Word Embedding for Social Sciences: An Interdisciplinary Survey
- Authors: Akira Matsui, Emilio Ferrara,
- Abstract summary: We build a taxonomy to illustrate the methods and procedures used in the surveyed papers.
This survey also conducts a simple experiment to warn that common similarity measurements used in the literature could yield different results.
- Score: 9.657531563610767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To extract essential information from complex data, computer scientists have been developing machine learning models that learn low-dimensional representation mode. From such advances in machine learning research, not only computer scientists but also social scientists have benefited and advanced their research because human behavior or social phenomena lies in complex data. However, this emerging trend is not well documented because different social science fields rarely cover each other's work, resulting in fragmented knowledge in the literature. To document this emerging trend, we survey recent studies that apply word embedding techniques to human behavior mining. We built a taxonomy to illustrate the methods and procedures used in the surveyed papers, aiding social science researchers in contextualizing their research within the literature on word embedding applications. This survey also conducts a simple experiment to warn that common similarity measurements used in the literature could yield different results even if they return consistent results at an aggregate level.
Related papers
- Tinkering Against Scaling [15.060264126253212]
We propose a "tinkering" approach that is inspired by existing works.
This method involves engaging with smaller models or components that are manageable for ordinary researchers.
We argue that tinkering is both a way of making and knowing for computational social science and a way of knowing for critical studies.
arXiv Detail & Related papers (2025-04-23T09:21:39Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - The Echoes of the 'I': Tracing Identity with Demographically Enhanced Word Embeddings [0.0]
Identity is one of the most commonly studied constructs in social science.
This paper introduces a novel approach to studying identity by enhancing word embeddings with socio-demographic information.
arXiv Detail & Related papers (2024-06-29T06:59:35Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.
ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research [0.0]
Building on these efforts we turn towards another critical challenge in machine learning, namely the curse of dimensionality.
Using the closely linked concept of intrinsic dimension we investigate to which the used machine learning models are influenced by the extend dimension of the data sets they are trained on.
arXiv Detail & Related papers (2024-03-13T11:44:30Z) - How Data Scientists Review the Scholarly Literature [4.406926847270567]
We examine the literature review practices of data scientists.
Data science represents a field seeing an exponential rise in papers.
No prior work has examined the specific practices and challenges faced by these scientists.
arXiv Detail & Related papers (2023-01-10T03:53:05Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Semantic and Relational Spaces in Science of Science: Deep Learning
Models for Article Vectorisation [4.178929174617172]
We focus on document-level embeddings based on the semantic and relational aspects of articles, using Natural Language Processing (NLP) and Graph Neural Networks (GNNs)
Our results show that using NLP we can encode a semantic space of articles, while with GNN we are able to build a relational space where the social practices of a research community are also encoded.
arXiv Detail & Related papers (2020-11-05T14:57:41Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
We present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications.
Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools.
We generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain.
arXiv Detail & Related papers (2020-10-28T08:31:40Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.