Robustness Evaluation of Deep Unsupervised Learning Algorithms for
Intrusion Detection Systems
- URL: http://arxiv.org/abs/2207.03576v2
- Date: Mon, 30 Oct 2023 15:48:39 GMT
- Title: Robustness Evaluation of Deep Unsupervised Learning Algorithms for
Intrusion Detection Systems
- Authors: D'Jeff Kanda Nkashama, Arian Soltani, Jean-Charles Verdier, Marc
Frappier, Pierre-Martin Tardif, Froduald Kabanza
- Abstract summary: This paper evaluates the robustness of six recent deep learning algorithms for intrusion detection on contaminated data.
Our experiments suggest that the state-of-the-art algorithms used in this study are sensitive to data contamination and reveal the importance of self-defense against data perturbation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, advances in deep learning have been observed in various fields,
including computer vision, natural language processing, and cybersecurity.
Machine learning (ML) has demonstrated its ability as a potential tool for
anomaly detection-based intrusion detection systems to build secure computer
networks. Increasingly, ML approaches are widely adopted than heuristic
approaches for cybersecurity because they learn directly from data. Data is
critical for the development of ML systems, and becomes potential targets for
attackers. Basically, data poisoning or contamination is one of the most common
techniques used to fool ML models through data. This paper evaluates the
robustness of six recent deep learning algorithms for intrusion detection on
contaminated data. Our experiments suggest that the state-of-the-art algorithms
used in this study are sensitive to data contamination and reveal the
importance of self-defense against data perturbation when developing novel
models, especially for intrusion detection systems.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Intrusion Detection: A Deep Learning Approach [0.0]
The paper proposes a novel architecture to combat intrusion detection that has a Convolutional Neural Network (CNN) module, along with a Long Short Term Memory(LSTM) module and a Support Vector Machine (SVM) classification function.
The analysis is followed by a comparison of both conventional machine learning techniques and deep learning methodologies, which highlights areas that could be further explored.
arXiv Detail & Related papers (2023-06-13T07:58:40Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
We propose an enhancement to an existing few-shot weakly-supervised deep learning anomaly detection framework.
This framework incorporates data augmentation, representation learning and ordinal regression.
We then evaluated and showed the performance of our implemented framework on three benchmark datasets.
arXiv Detail & Related papers (2023-04-15T04:37:54Z) - Harnessing the Speed and Accuracy of Machine Learning to Advance Cybersecurity [0.0]
Traditional signature-based methods of malware detection have limitations in detecting complex threats.
In recent years, machine learning has emerged as a promising solution to detect malware effectively.
ML algorithms are capable of analyzing large datasets and identifying patterns that are difficult for humans to identify.
arXiv Detail & Related papers (2023-02-24T02:42:38Z) - Intrusion Detection Systems Using Support Vector Machines on the
KDDCUP'99 and NSL-KDD Datasets: A Comprehensive Survey [6.847009696437944]
We focus on studies that have been evaluated on the two most widely used datasets in cybersecurity namely: the KDDCUP'99 and the NSL-KDD datasets.
We provide a summary of each method, identifying the role of the SVMs, and all other algorithms involved in the studies.
arXiv Detail & Related papers (2022-09-12T20:02:12Z) - Adversarial Machine Learning Threat Analysis in Open Radio Access
Networks [37.23982660941893]
The Open Radio Access Network (O-RAN) is a new, open, adaptive, and intelligent RAN architecture.
In this paper, we present a systematic adversarial machine learning threat analysis for the O-RAN.
arXiv Detail & Related papers (2022-01-16T17:01:38Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
We perform a comprehensive study on NSL-KDD, a network traffic dataset, by visualizing patterns and employing different learning-based models to detect cyber attacks.
Unlike previous shallow learning and deep learning models that use the single learning model approach for intrusion detection, we adopt a hierarchy strategy.
We demonstrate the advantage of the unsupervised representation learning model in binary intrusion detection tasks.
arXiv Detail & Related papers (2021-08-18T21:19:26Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Continual Learning for Anomaly Detection in Surveillance Videos [36.24563211765782]
We propose an online anomaly detection method for surveillance videos using transfer learning and continual learning.
Our proposed algorithm leverages the feature extraction power of neural network-based models for transfer learning, and the continual learning capability of statistical detection methods.
arXiv Detail & Related papers (2020-04-15T16:41:20Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.