Deep Learning Advancements in Anomaly Detection: A Comprehensive Survey
- URL: http://arxiv.org/abs/2503.13195v1
- Date: Mon, 17 Mar 2025 14:04:48 GMT
- Title: Deep Learning Advancements in Anomaly Detection: A Comprehensive Survey
- Authors: Haoqi Huang, Ping Wang, Jianhua Pei, Jiacheng Wang, Shahen Alexanian, Dusit Niyato,
- Abstract summary: As datasets become more complex, traditional anomaly detection methods struggle to capture intricate patterns.<n>Deep learning has made AD methods more powerful and adaptable, improving their ability to handle high-dimensional and unstructured data.<n>This review bridges gaps in existing literature and serves as a valuable resource for researchers and practitioners seeking to enhance AD techniques using deep learning.
- Score: 43.75849983150303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid expansion of data from diverse sources has made anomaly detection (AD) increasingly essential for identifying unexpected observations that may signal system failures, security breaches, or fraud. As datasets become more complex and high-dimensional, traditional detection methods struggle to effectively capture intricate patterns. Advances in deep learning have made AD methods more powerful and adaptable, improving their ability to handle high-dimensional and unstructured data. This survey provides a comprehensive review of over 180 recent studies, focusing on deep learning-based AD techniques. We categorize and analyze these methods into reconstruction-based and prediction-based approaches, highlighting their effectiveness in modeling complex data distributions. Additionally, we explore the integration of traditional and deep learning methods, highlighting how hybrid approaches combine the interpretability of traditional techniques with the flexibility of deep learning to enhance detection accuracy and model transparency. Finally, we identify open issues and propose future research directions to advance the field of AD. This review bridges gaps in existing literature and serves as a valuable resource for researchers and practitioners seeking to enhance AD techniques using deep learning.
Related papers
- Anomaly Detection in Time Series Data Using Reinforcement Learning, Variational Autoencoder, and Active Learning [0.8287206589886879]
This approach is pivotal in domains such as data centers, sensor networks, and finance.
Our method overcomes these limitations by integrating Deep Reinforcement Learning (DRL) with a Variational Autoencoder (VAE) and Active Learning.
arXiv Detail & Related papers (2025-04-03T19:41:52Z) - A Review Paper of the Effects of Distinct Modalities and ML Techniques to Distracted Driving Detection [3.6248657646376707]
Distracted driving remains a significant global challenge with severe human and economic repercussions.<n>This systematic review addresses critical gaps by providing a comprehensive analysis of machine learning (ML) and deep learning (DL) techniques applied across various data modalities.
arXiv Detail & Related papers (2025-01-20T21:35:34Z) - Passive Deepfake Detection Across Multi-modalities: A Comprehensive Survey [1.7811840395202345]
deepfakes (DFs) have been utilized for malicious purposes, such as individual impersonation, misinformation spreading, and artists style imitation.
This survey offers researchers and practitioners a comprehensive resource for understanding the current landscape, methodological approaches, and promising future directions in this rapidly evolving field.
arXiv Detail & Related papers (2024-11-26T22:04:49Z) - The Cat and Mouse Game: The Ongoing Arms Race Between Diffusion Models and Detection Methods [0.0]
Diffusion models have transformed synthetic media generation, offering unmatched realism and control over content creation.
They can facilitate deepfakes, misinformation, and unauthorized reproduction of copyrighted material.
In response, the need for effective detection mechanisms has become increasingly urgent.
arXiv Detail & Related papers (2024-10-24T15:51:04Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Collaborative Knowledge Infusion for Low-resource Stance Detection [83.88515573352795]
Target-related knowledge is often needed to assist stance detection models.
We propose a collaborative knowledge infusion approach for low-resource stance detection tasks.
arXiv Detail & Related papers (2024-03-28T08:32:14Z) - Hyperspectral Image Analysis in Single-Modal and Multimodal setting
using Deep Learning Techniques [1.2328446298523066]
Hyperspectral imaging provides precise classification for land use and cover due to its exceptional spectral resolution.
However, the challenges of high dimensionality and limited spatial resolution hinder its effectiveness.
This study addresses these challenges by employing deep learning techniques to efficiently process, extract features, and classify data in an integrated manner.
arXiv Detail & Related papers (2024-03-03T15:47:43Z) - Effective Multi-Stage Training Model For Edge Computing Devices In
Intrusion Detection [0.0]
This research introduces a three-stage training paradigm, augmented by an enhanced pruning methodology and model compression techniques.
The objective is to elevate the system's effectiveness, concurrently maintaining a high level of accuracy for intrusion detection.
arXiv Detail & Related papers (2024-01-31T02:20:21Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
Knowledge Distillation (KD) for object detection aims to train a compact detector by transferring knowledge from a teacher model.
We propose inconsistent knowledge distillation (IKD) which aims to distill knowledge inherent in the teacher model's counter-intuitive perceptions.
Our method outperforms state-of-the-art KD baselines on one-stage, two-stage and anchor-free object detectors.
arXiv Detail & Related papers (2022-09-20T16:36:28Z) - A Unifying Review of Deep and Shallow Anomaly Detection [38.202998314502786]
We aim to identify the common underlying principles as well as the assumptions that are often made implicitly by various methods.
We provide an empirical assessment of major existing methods that is enriched by the use of recent explainability techniques.
We outline critical open challenges and identify specific paths for future research in anomaly detection.
arXiv Detail & Related papers (2020-09-24T14:47:54Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for Deep Learning applications.
We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches.
We highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
arXiv Detail & Related papers (2020-03-16T02:47:23Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.