Dynamic Community Detection via Adversarial Temporal Graph
Representation Learning
- URL: http://arxiv.org/abs/2207.03580v1
- Date: Wed, 29 Jun 2022 08:44:22 GMT
- Title: Dynamic Community Detection via Adversarial Temporal Graph
Representation Learning
- Authors: Changwei Gong, Changhong Jing, Yanyan Shen, Shuqiang Wang
- Abstract summary: In this work, an adversarial temporal graph representation learning framework is proposed to detect dynamic communities from a small sample of brain network data.
In addition, the framework employs adversarial training to guide the learning of temporal graph representation and optimize the measurable modularity loss to maximize the modularity of community.
- Score: 17.487265170798974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic community detection has been prospered as a powerful tool for
quantifying changes in dynamic brain network connectivity patterns by
identifying strongly connected sets of nodes. However, as the network science
problems and network data to be processed become gradually more sophisticated,
it awaits a better method to efficiently learn low dimensional representation
from dynamic network data and reveal its latent function that changes over time
in the brain network. In this work, an adversarial temporal graph
representation learning (ATGRL) framework is proposed to detect dynamic
communities from a small sample of brain network data. It adopts a novel
temporal graph attention network as an encoder to capture more efficient
spatio-temporal features by attention mechanism in both spatial and temporal
dimensions. In addition, the framework employs adversarial training to guide
the learning of temporal graph representation and optimize the measurable
modularity loss to maximize the modularity of community. Experiments on the
real-world brain networks datasets are demonstrated to show the effectiveness
of this new method.
Related papers
- Contrastive Representation Learning for Dynamic Link Prediction in Temporal Networks [1.9389881806157312]
We introduce a self-supervised method for learning representations of temporal networks.
We propose a recurrent message-passing neural network architecture for modeling the information flow over time-respecting paths of temporal networks.
The proposed method is tested on Enron, COLAB, and Facebook datasets.
arXiv Detail & Related papers (2024-08-22T22:50:46Z) - Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations [0.0]
Piecewise-Veable Model (PiVeM) for representation of continuous-time dynamic networks.
We show that PiVeM can successfully represent network structure and dynamics in ultra-low two-dimensional spaces.
It outperforms relevant state-of-art methods in downstream tasks such as link prediction.
arXiv Detail & Related papers (2022-12-23T13:57:56Z) - Graph similarity learning for change-point detection in dynamic networks [15.694880385913534]
We consider dynamic networks that are temporal sequences of graph snapshots.
This task is often termed network change-point detection and has numerous applications, such as fraud detection or physical motion monitoring.
We design a method to perform online network change-point detection that can adapt to the specific network domain and localise changes with no delay.
arXiv Detail & Related papers (2022-03-29T12:16:38Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Efficient-Dyn: Dynamic Graph Representation Learning via Event-based
Temporal Sparse Attention Network [2.0047096160313456]
Dynamic graph neural networks have received more and more attention from researchers.
We propose a novel dynamic graph neural network, Efficient-Dyn.
It adaptively encodes temporal information into a sequence of patches with an equal amount of temporal-topological structure.
arXiv Detail & Related papers (2022-01-04T23:52:24Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
We propose a novel multi-granular-temporal graph network for skeleton-based action classification.
We develop a dual-head graph network consisting of two inter-leaved branches, which enables us to extract at least two-temporal resolutions.
We conduct extensive experiments on three large-scale datasets.
arXiv Detail & Related papers (2021-08-10T09:25:07Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
We propose STAGIN, a method for learning dynamic graph representation of the brain connectome with temporal attention.
Experiments on the HCP-Rest and the HCP-Task datasets demonstrate exceptional performance of our proposed method.
arXiv Detail & Related papers (2021-05-27T23:06:50Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.