論文の概要: Few-Example Clustering via Contrastive Learning
- arxiv url: http://arxiv.org/abs/2207.04050v1
- Date: Fri, 8 Jul 2022 05:33:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-12 12:58:09.424179
- Title: Few-Example Clustering via Contrastive Learning
- Title(参考訳): コントラスト学習によるサンプルクラスタリング
- Authors: Minguk Jang, Sae-Young Chung
- Abstract要約: 本稿では,Few-Example Clustering (FEC)を提案する。
FECは興味深い学習曲線を示し、クラスタリング性能は徐々に増加し、その後急激に低下する。
- 参考スコア(独自算出の注目度): 16.346069386394703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Few-Example Clustering (FEC), a novel algorithm that performs
contrastive learning to cluster few examples. Our method is composed of the
following three steps: (1) generation of candidate cluster assignments, (2)
contrastive learning for each cluster assignment, and (3) selection of the best
candidate. Based on the hypothesis that the contrastive learner with the
ground-truth cluster assignment is trained faster than the others, we choose
the candidate with the smallest training loss in the early stage of learning in
step (3). Extensive experiments on the \textit{mini}-ImageNet and CUB-200-2011
datasets show that FEC outperforms other baselines by about 3.2% on average
under various scenarios. FEC also exhibits an interesting learning curve where
clustering performance gradually increases and then sharply drops.
- Abstract(参考訳): 本研究では,いくつかの例に対比学習を行う新しいアルゴリズムであるfecを提案する。
提案手法は,(1)クラスタ割り当て候補の生成,(2)クラスタ割り当て毎のコントラスト学習,(3)ベスト候補の選択という3つのステップから構成される。
本研究は,第3段階における学習の早い段階での学習損失が最も少ない候補を選択することにより,第3段階の学習者と第3段階のクラスタ割り当ての対比学習者が他の者よりも高速に学習できるという仮説に基づくものである。
textit{mini}-ImageNetとCUB-200-2011データセットの大規模な実験により、FECは他のベースラインを平均3.2%上回る結果となった。
FECはまた、クラスタリングのパフォーマンスが徐々に増加し、徐々に低下する興味深い学習曲線を示している。
関連論文リスト
- Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
ディープクラスタリングは、インスタンスの表現(つまり、表現学習)を最適化し、固有のデータ分散を探索することができる。
結合された目的は、すべてのインスタンスが一様機能に崩壊する、自明な解決策を意味する。
本研究では,1段階クラスタリングにおいて,教師あり学習における一般的な識別タスクが不安定であることを示す。
新規な安定クラスタ識別(SeCu)タスクを提案し、それに応じて新しいハードネス対応クラスタリング基準を得ることができる。
論文 参考訳(メタデータ) (2023-11-24T06:43:26Z) - CLC: Cluster Assignment via Contrastive Representation Learning [9.631532215759256]
コントラスト学習を用いてクラスタ割り当てを直接学習するコントラスト学習ベースのクラスタリング(CLC)を提案する。
完全なImageNetデータセットで53.4%の精度を実現し、既存のメソッドを大きなマージンで上回ります。
論文 参考訳(メタデータ) (2023-06-08T07:15:13Z) - Overlapping oriented imbalanced ensemble learning method based on
projective clustering and stagewise hybrid sampling [22.32930261633615]
本稿では、二重クラスタリングとステージワイドハイブリッドサンプリング(DCSHS)に基づくアンサンブル学習アルゴリズムを提案する。
我々のアルゴリズムの大きな利点は、重なり合う多数サンプルのソフトな除去を実現するためにCSの交叉性を利用することができることである。
論文 参考訳(メタデータ) (2022-11-30T01:49:06Z) - C3: Cross-instance guided Contrastive Clustering [8.953252452851862]
クラスタリングは、事前に定義されたラベルを使わずに、類似したデータサンプルをクラスタに収集するタスクである。
我々は,新しいコントラストクラスタリング手法であるクロスインスタンスガイドコントラストクラスタリング(C3)を提案する。
提案手法は、ベンチマークコンピュータビジョンデータセット上で最先端のアルゴリズムより優れている。
論文 参考訳(メタデータ) (2022-11-14T06:28:07Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
我々は,クラスタリング性能に重要な識別表現を学習するために,Neighborhood Contrastive Learningという新しいフレームワークを構築した。
これらの2つの成分がクラスタリング性能に大きく寄与し、我々のモデルが最先端の手法よりも大きなマージンで優れていることを実験的に実証した。
論文 参考訳(メタデータ) (2021-06-20T17:34:55Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
既存のコントラスト学習法は、非常に低い学習効率に苦しむ。
アンダークラスタリングとオーバークラスタリングの問題は、学習効率の大きな障害である。
中央三重項損失を用いた新しい自己監督学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-18T07:47:10Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - An Efficient Framework for Clustered Federated Learning [26.24231986590374]
本稿では,ユーザがクラスタに分散するフェデレーション学習(FL)の問題に対処する。
反復フェデレーションクラスタリングアルゴリズム(IFCA)を提案する。
ニューラルネットワークのような非分割問題では,アルゴリズムが効率的であることを示す。
論文 参考訳(メタデータ) (2020-06-07T08:48:59Z) - Generalized Zero-Shot Learning Via Over-Complete Distribution [79.5140590952889]
そこで本稿では,CVAE (Conditional Variational Autoencoder) を用いたOCD(Over-Complete Distribution) の生成を提案する。
フレームワークの有効性は,Zero-Shot LearningプロトコルとGeneralized Zero-Shot Learningプロトコルの両方を用いて評価する。
論文 参考訳(メタデータ) (2020-04-01T19:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。