Concatenation of the Gottesman-Kitaev-Preskill code with the XZZX
surface code
- URL: http://arxiv.org/abs/2207.04383v3
- Date: Mon, 10 Apr 2023 08:07:53 GMT
- Title: Concatenation of the Gottesman-Kitaev-Preskill code with the XZZX
surface code
- Authors: Jiaxuan Zhang, Yu-Chun Wu, and Guo-Ping Guo
- Abstract summary: An important category of bosonic codes called the Gottesman-Kitaev-Preskill (GKP) code has aroused much interest recently.
The error correction ability of GKP code is limited since it can only correct small shift errors in position and momentum quadratures.
A natural approach to promote the GKP error correction for large-scale, fault-tolerant quantum computation is concatenating encoded GKP states with a stabilizer code.
- Score: 1.2999413717930821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bosonic codes provide an alternative option for quantum error correction. An
important category of bosonic codes called the Gottesman-Kitaev-Preskill (GKP)
code has aroused much interest recently. Theoretically, the error correction
ability of GKP code is limited since it can only correct small shift errors in
position and momentum quadratures. A natural approach to promote the GKP error
correction for large-scale, fault-tolerant quantum computation is concatenating
encoded GKP states with a stabilizer code. The performance of the XZZX
surface-GKP code, i.e., the single-mode GKP code concatenated with the XZZX
surface code is investigated in this paper under two different noise models.
Firstly, in the code-capacity noise model, the asymmetric rectangular GKP code
with parameter $\lambda$ is introduced. Using the minimum weight perfect
matching decoder combined with the continuous-variable GKP information, the
optimal threshold of the XZZX-surface GKP code reaches $\sigma\approx0.67$ when
$\lambda=2.1$, compared with the threshold $\sigma\approx0.60$ of the standard
surface-GKP code. Secondly, we analyze the shift errors of two-qubit gates in
the actual implementation and build the full circuit-level noise model. By
setting the appropriate bias parameters, the logical error rate is reduced by
several times in some cases. These results indicate the XZZX surface-GKP codes
are more suitable for asymmetric concatenation under the general noise models.
We also estimate the overhead of the XZZX-surface GKP code which uses about 291
GKP states with the noise parameter 18.5 dB ($\kappa/g \approx 0.71\%$) to
encode a logical qubit with the error rate $2.53\times10^{-7}$, compared with
the qubit-based surface code using 3041 qubits to achieve almost the same
logical error rate.
Related papers
- Bit-flipping Decoder Failure Rate Estimation for (v,w)-regular Codes [84.0257274213152]
We propose a new technique to provide accurate estimates of the DFR of a two-iterations (parallel) bit flipping decoder.
We validate our results, providing comparisons of the modeled and simulated weight of the syndrome, incorrectly-guessed error bit distribution at the end of the first iteration, and two-itcrypteration Decoding Failure Rates (DFR)
arXiv Detail & Related papers (2024-01-30T11:40:24Z) - Correcting biased noise using Gottesman-Kitaev-Preskill repetition code
with noisy ancilla [0.6802401545890963]
Gottesman-Kitaev-Preskill (GKP) code is proposed to correct small displacement error in phase space.
If noise in phase space is biased, square-lattice GKP code can be ancillaryd with XZZX surface code or repetition code.
We study the performance of GKP repetition codes with physical ancillary GKP qubits in correcting biased noise.
arXiv Detail & Related papers (2023-08-03T06:14:43Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
arXiv Detail & Related papers (2023-01-24T14:17:07Z) - Biased Gottesman-Kitaev-Preskill repetition code [0.0]
Continuous-variable quantum computing architectures based upon the Gottesmann-Kitaev-Preskill (GKP) encoding have emerged as a promising candidate.
We study the code-capacity behaviour of a rectangular-lattice GKP encoding with a repetition code under an isotropic Gaussian displacement channel.
arXiv Detail & Related papers (2022-12-21T22:56:05Z) - Tailored XZZX codes for biased noise [60.12487959001671]
We study a family of codes having XZZX-type stabilizer generators.
We show that these XZZX codes are highly qubit efficient if tailored to biased noise.
arXiv Detail & Related papers (2022-03-30T17:26:31Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Quantum error correction with the color-Gottesman-Kitaev-Preskill code [5.780815306252637]
The Gottesman-Kitaev-Preskill (GKP) code is an important type of bosonic quantum error-correcting code.
In this paper, we consider the concatenation of the single-mode GKP code with the two-dimension (2D) color code.
arXiv Detail & Related papers (2021-12-29T08:19:36Z) - Quantum Error Correction with Gauge Symmetries [69.02115180674885]
Quantum simulations of Lattice Gauge Theories (LGTs) are often formulated on an enlarged Hilbert space containing both physical and unphysical sectors.
We provide simple fault-tolerant procedures that exploit such redundancy by combining a phase flip error correction code with the Gauss' law constraint.
arXiv Detail & Related papers (2021-12-09T19:29:34Z) - Low overhead fault-tolerant quantum error correction with the
surface-GKP code [60.44022726730614]
We propose a highly effective use of the surface-GKP code, i.e., the surface code consisting of bosonic GKP qubits instead of bare two-dimensional qubits.
We show that a low logical failure rate $p_L 10-7$ can be achieved with moderate hardware requirements.
arXiv Detail & Related papers (2021-03-11T23:07:52Z) - Enhanced noise resilience of the surface-GKP code via designed bias [0.0]
We study the code obtained by concatenating the standard single-mode Gottesman-Kitaev-Preskill (GKP) code with the surface code.
We show that the noise tolerance of this surface-GKP code with respect to (Gaussian) displacement errors improves when a single-mode squeezing unitary is applied to each mode.
arXiv Detail & Related papers (2020-04-01T16:08:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.