Optimal Clustering by Lloyd Algorithm for Low-Rank Mixture Model
- URL: http://arxiv.org/abs/2207.04600v2
- Date: Wed, 7 Jun 2023 03:25:39 GMT
- Title: Optimal Clustering by Lloyd Algorithm for Low-Rank Mixture Model
- Authors: Zhongyuan Lyu and Dong Xia
- Abstract summary: We propose a low-rank mixture model (LrMM) to treat matrix-valued observations.
A computationally efficient clustering method is designed by integrating Lloyd's algorithm and low-rank approximation.
Our method outperforms others in the literature on real-world datasets.
- Score: 12.868722327487752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the computational and statistical limits in
clustering matrix-valued observations. We propose a low-rank mixture model
(LrMM), adapted from the classical Gaussian mixture model (GMM) to treat
matrix-valued observations, which assumes low-rankness for population center
matrices. A computationally efficient clustering method is designed by
integrating Lloyd's algorithm and low-rank approximation. Once
well-initialized, the algorithm converges fast and achieves an exponential-type
clustering error rate that is minimax optimal. Meanwhile, we show that a
tensor-based spectral method delivers a good initial clustering. Comparable to
GMM, the minimax optimal clustering error rate is decided by the separation
strength, i.e., the minimal distance between population center matrices. By
exploiting low-rankness, the proposed algorithm is blessed with a weaker
requirement on the separation strength. Unlike GMM, however, the computational
difficulty of LrMM is characterized by the signal strength, i.e., the smallest
non-zero singular values of population center matrices. Evidence is provided
showing that no polynomial-time algorithm is consistent if the signal strength
is not strong enough, even though the separation strength is strong. Intriguing
differences between estimation and clustering under LrMM are discussed. The
merits of low-rank Lloyd's algorithm are confirmed by comprehensive simulation
experiments. Finally, our method outperforms others in the literature on
real-world datasets.
Related papers
- Linear time Evidence Accumulation Clustering with KMeans [0.0]
This work describes a trick which mimic the behavior of average linkage clustering.
We found a way of computing efficiently the density of a partitioning, reducing the cost from a quadratic to linear complexity.
The k-means results are comparable to the best state of the art in terms of NMI while keeping the computational cost low.
arXiv Detail & Related papers (2023-11-15T14:12:59Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
We study matrix estimation problems arising in reinforcement learning (RL) with low-rank structure.
In low-rank bandits, the matrix to be recovered specifies the expected arm rewards, and for low-rank Markov Decision Processes (MDPs), it may for example characterize the transition kernel of the MDP.
We show that simple spectral-based matrix estimation approaches efficiently recover the singular subspaces of the matrix and exhibit nearly-minimal entry-wise error.
arXiv Detail & Related papers (2023-10-10T17:06:41Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Consistency of Lloyd's Algorithm Under Perturbations [11.56433365648479]
Lloyd's algorithm is one of the most widely used clustering algorithms.
We show that the mis-clustering rate of Lloyd's algorithm on samples from a sub-Gaussian mixture is exponentially bounded after $O(log(n))$ iterations.
arXiv Detail & Related papers (2023-09-01T16:45:52Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - A Non-Parametric Bootstrap for Spectral Clustering [0.7673339435080445]
We develop two novel algorithms that incorporate the spectral decomposition of the data matrix and a non-parametric bootstrap sampling scheme.
Our techniques are more consistent in their convergence when compared to other bootstrapped algorithms that fit finite mixture models.
arXiv Detail & Related papers (2022-09-13T08:37:05Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
Cut-based directed graph (digraph) clustering often focuses on finding dense within-cluster or sparse between-cluster connections.
For flow-based clusterings the edges between clusters tend to be oriented in one direction and have been found in migration data, food webs, and trade data.
arXiv Detail & Related papers (2022-03-02T20:07:04Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
Clustering is a fundamental primitive in unsupervised learning.
Recent work has established lower bounds against the class of low-degree methods.
We show that, perhaps surprisingly, this particular clustering model textitdoes not exhibit a statistical-to-computational gap.
arXiv Detail & Related papers (2021-12-07T18:50:17Z) - Optimal Clustering in Anisotropic Gaussian Mixture Models [3.5590836605011047]
We study the clustering task under anisotropic Gaussian Mixture Models.
We characterize the dependence of signal-to-noise ratios on the cluster centers.
arXiv Detail & Related papers (2021-01-14T00:31:52Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Computationally efficient sparse clustering [67.95910835079825]
We provide a finite sample analysis of a new clustering algorithm based on PCA.
We show that it achieves the minimax optimal misclustering rate in the regime $|theta infty$.
arXiv Detail & Related papers (2020-05-21T17:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.