論文の概要: SkexGen: Autoregressive Generation of CAD Construction Sequences with
Disentangled Codebooks
- arxiv url: http://arxiv.org/abs/2207.04632v1
- Date: Mon, 11 Jul 2022 05:10:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-13 01:12:21.288575
- Title: SkexGen: Autoregressive Generation of CAD Construction Sequences with
Disentangled Codebooks
- Title(参考訳): SkexGen: 歪んだコードブックを用いたCAD構築シーケンスの自動回帰生成
- Authors: Xiang Xu, Karl D.D. Willis, Joseph G. Lambourne, Chin-Yi Cheng,
Pradeep Kumar Jayaraman, Yasutaka Furukawa
- Abstract要約: 我々はコンピュータ支援設計(CAD)構築シーケンスのための新しい自己回帰生成モデルであるSkexGenを提案する。
自動回帰トランスフォーマーデコーダは、コードブックベクトルによって指定された特定の特性を共有するCAD構成シーケンスを生成する。
- 参考スコア(独自算出の注目度): 37.33746656109331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present SkexGen, a novel autoregressive generative model for
computer-aided design (CAD) construction sequences containing
sketch-and-extrude modeling operations. Our model utilizes distinct Transformer
architectures to encode topological, geometric, and extrusion variations of
construction sequences into disentangled codebooks. Autoregressive Transformer
decoders generate CAD construction sequences sharing certain properties
specified by the codebook vectors. Extensive experiments demonstrate that our
disentangled codebook representation generates diverse and high-quality CAD
models, enhances user control, and enables efficient exploration of the design
space. The code is available at https://samxuxiang.github.io/skexgen.
- Abstract(参考訳): 我々は、スケッチ・アンド・エクスクルード・モデリング操作を含むコンピュータ支援設計(CAD)構築シーケンスのための新しい自己回帰生成モデルであるSkexGenを提案する。
本モデルは、異なるトランスフォーマーアーキテクチャを用いて、構造列の位相的、幾何学的、押出的変化を異方コードブックにエンコードする。
自動回帰トランスフォーマーデコーダは、コードブックベクトルによって指定された特定の特性を共有するCAD構成シーケンスを生成する。
広汎な実験により,コードブック表現は多種多様な高品質CADモデルを生成し,ユーザ制御を強化し,設計空間の効率的な探索を可能にした。
コードはhttps://samxuxiang.github.io/skexgenで入手できる。
関連論文リスト
- PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction [86.726941702182]
再構成ネットワークPS-CADに幾何学的ガイダンスを導入する。
我々は、現在の再構成が点雲としての完備モデルと異なる曲面の幾何学を提供する。
第二に、幾何学的解析を用いて、候補面に対応する平面的プロンプトの集合を抽出する。
論文 参考訳(メタデータ) (2024-05-24T03:43:55Z) - ContrastCAD: Contrastive Learning-based Representation Learning for Computer-Aided Design Models [0.7373617024876725]
本稿では,ContrastCAD という,CAD モデルを学習するための対照的な学習手法を提案する。
コントラストCADはCADモデルの構成シーケンス内の意味情報を効果的にキャプチャする。
また,RRE法(Random Replace and Extrude)と呼ばれる新しいCADデータ拡張手法を提案し,モデルの学習性能を向上させる。
論文 参考訳(メタデータ) (2024-04-02T05:30:39Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
本調査では,コンピュータ支援設計における学習手法の概要について概観する。
類似性解析と検索、2Dおよび3DCADモデル合成、点雲からのCAD生成を含む。
ベンチマークデータセットとその特性の完全なリストと、この領域の研究を推進しているオープンソースコードを提供する。
論文 参考訳(メタデータ) (2024-02-27T17:11:35Z) - Hierarchical Neural Coding for Controllable CAD Model Generation [34.14256897199849]
本稿では,CAD(Computer Aided Design)の新しい生成モデルを提案する。
これはCADモデルの高レベルな設計概念を、ニューラルネットワークの3レベル階層木として表現している。
コードツリーを使用してターゲット設計を指定することでCADモデルの生成や完成を制御する。
論文 参考訳(メタデータ) (2023-06-30T21:49:41Z) - Towards Accurate Image Coding: Improved Autoregressive Image Generation
with Dynamic Vector Quantization [73.52943587514386]
既存のベクトル量子化(VQ)ベースの自己回帰モデルは、2段階生成パラダイムに従う。
画像領域を可変長符号に符号化する動的量子化VAE(DQ-VAE)を提案する。
論文 参考訳(メタデータ) (2023-05-19T14:56:05Z) - SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude
Operations [21.000539206470897]
SECAD-Netは、コンパクトで使いやすいCADモデルの再構築を目的とした、エンドツーエンドのニューラルネットワークである。
本研究は,CAD再構築の手法など,最先端の代替手段よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-19T09:26:03Z) - AutoCAD: Automatically Generating Counterfactuals for Mitigating
Shortcut Learning [70.70393006697383]
完全自動かつタスクに依存しないCAD生成フレームワークであるAutoCADについて述べる。
本稿では,完全に自動化されたタスクに依存しないCAD生成フレームワークであるAutoCADを提案する。
論文 参考訳(メタデータ) (2022-11-29T13:39:53Z) - SketchGen: Generating Constrained CAD Sketches [34.26732809515799]
異種性問題に対処するトランスフォーマーアーキテクチャに基づく生成モデルとしてSketchGenを提案する。
私たちの仕事のハイライトは、最終的なアウトプットをより規則化するための制約によってリンクされたプリミティブを生成する機能です。
論文 参考訳(メタデータ) (2021-06-04T20:45:03Z) - DeepCAD: A Deep Generative Network for Computer-Aided Design Models [37.655225142981564]
形状をコンピュータ支援設計(CAD)操作のシーケンスとして記述した形状表現の3次元生成モデルについて述べる。
CAD操作と自然言語の類似性について,トランスフォーマーに基づくCAD生成ネットワークを提案する。
論文 参考訳(メタデータ) (2021-05-20T03:29:18Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
DSG-Netは3次元形状の非交叉構造と幾何学的メッシュ表現を学習するディープニューラルネットワークである。
これは、幾何(構造)を不変に保ちながら構造(幾何学)のような不整合制御を持つ新しい形状生成アプリケーションの範囲をサポートする。
本手法は,制御可能な生成アプリケーションだけでなく,高品質な合成形状を生成できる。
論文 参考訳(メタデータ) (2020-08-12T17:06:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。