論文の概要: Going the Extra Mile in Face Image Quality Assessment: A Novel Database
and Model
- arxiv url: http://arxiv.org/abs/2207.04904v2
- Date: Sun, 30 Jul 2023 14:12:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-02 00:47:17.581485
- Title: Going the Extra Mile in Face Image Quality Assessment: A Novel Database
and Model
- Title(参考訳): 顔画像品質評価における余分なミス:新しいデータベースとモデル
- Authors: Shaolin Su, Hanhe Lin, Vlad Hosu, Oliver Wiedemann, Jinqiu Sun, Yu
Zhu, Hantao Liu, Yanning Zhang, Dietmar Saupe
- Abstract要約: 現在までに開発された最大のアノテートIQAデータベースについて紹介する。
本稿では,顔画像の品質を正確に予測する新しいディープラーニングモデルを提案する。
- 参考スコア(独自算出の注目度): 42.05084438912876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An accurate computational model for image quality assessment (IQA) benefits
many vision applications, such as image filtering, image processing, and image
generation. Although the study of face images is an important subfield in
computer vision research, the lack of face IQA data and models limits the
precision of current IQA metrics on face image processing tasks such as face
superresolution, face enhancement, and face editing. To narrow this gap, in
this paper, we first introduce the largest annotated IQA database developed to
date, which contains 20,000 human faces -- an order of magnitude larger than
all existing rated datasets of faces -- of diverse individuals in highly varied
circumstances. Based on the database, we further propose a novel deep learning
model to accurately predict face image quality, which, for the first time,
explores the use of generative priors for IQA. By taking advantage of rich
statistics encoded in well pretrained off-the-shelf generative models, we
obtain generative prior information and use it as latent references to
facilitate blind IQA. The experimental results demonstrate both the value of
the proposed dataset for face IQA and the superior performance of the proposed
model.
- Abstract(参考訳): 画像品質評価のための正確な計算モデル(IQA)は、画像フィルタリング、画像処理、画像生成など多くの視覚的応用に有用である。
顔画像の研究はコンピュータビジョン研究において重要なサブフィールドであるが、顔IQAデータやモデルがないため、顔超解像、顔強調、顔編集などの顔画像処理タスクにおける現在のIQAメトリクスの精度が制限されている。
このギャップを狭めるために、本稿では、さまざまな状況において、これまで開発された最大の注釈付きIQAデータベースを紹介します。
さらに,データベースに基づいて顔画像の品質を正確に予測する新たなディープラーニングモデルを提案する。
プレトレーニング済みの既成生成モデルで符号化されたリッチな統計を利用して、生成前の情報を取得し、それを潜時参照として使用して、盲点IQAを促進する。
実験結果は,face iqaのための提案するデータセットの価値と,提案モデルの優れた性能の両方を示す。
関連論文リスト
- Rank-based No-reference Quality Assessment for Face Swapping [88.53827937914038]
顔スワップ法における品質測定の基準は、操作された画像とソース画像の間のいくつかの距離に依存する。
顔スワップ用に設計された新しい非参照画像品質評価法(NR-IQA)を提案する。
論文 参考訳(メタデータ) (2024-06-04T01:36:29Z) - ATTIQA: Generalizable Image Quality Feature Extractor using Attribute-aware Pretraining [25.680035174334886]
no-reference Image Quality Assessment (NR-IQA)では、限られたデータセットサイズでの課題は、堅牢で一般化可能なモデルの開発を妨げている。
本稿では,高品質な知識を選択的に抽出し,IQAの一般化可能な表現を構築する新しい事前学習フレームワークを提案する。
提案手法は,複数のIQAデータセット上での最先端性能を実現し,優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-06-03T06:03:57Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
野生のブラインド画像品質評価(IQA)は重大な課題を呈している。
大規模なトレーニングデータの収集が困難であることを考えると、厳密な一般化モデルを開発するために限られたデータを活用することは、未解決の問題である。
事前訓練されたテキスト・ツー・イメージ(T2I)拡散モデルの堅牢な画像認識能力により,新しいIQA法,拡散先行に基づくIQAを提案する。
論文 参考訳(メタデータ) (2024-05-30T12:32:35Z) - Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLMに基づく画像品質評価(IQA)は、画像品質を言語的に記述し、人間の表現に合わせることを目指している。
野生における画像品質評価(DepictQA-Wild)について紹介する。
本手法は,評価タスクと比較タスク,簡潔かつ詳細な応答,完全参照,非参照シナリオを含む多機能IQAタスクパラダイムを含む。
論文 参考訳(メタデータ) (2024-05-29T07:49:15Z) - Understanding and Evaluating Human Preferences for AI Generated Images with Instruction Tuning [58.41087653543607]
我々はまず,AIGCIQA2023+と呼ばれるAIGIのための画像品質評価(IQA)データベースを構築した。
本稿では,AIGIに対する人間の嗜好を評価するためのMINT-IQAモデルを提案する。
論文 参考訳(メタデータ) (2024-05-12T17:45:11Z) - FaceQgen: Semi-Supervised Deep Learning for Face Image Quality
Assessment [19.928262020265965]
FaceQgenは、ジェネレーティブ・アドバイサル・ネットワークに基づく顔画像の非参照品質評価手法である。
顔認識精度に関連するスカラー品質尺度を生成する。
SCfaceデータベースを使用して、スクラッチからトレーニングされる。
論文 参考訳(メタデータ) (2022-01-03T17:22:38Z) - Continual Learning for Blind Image Quality Assessment [80.55119990128419]
ブラインド画像品質評価(BIQA)モデルは、サブポピュレーションシフトに継続的に適応できない。
最近の研究では、利用可能なすべての人間評価のIQAデータセットの組み合わせに関するBIQAメソッドのトレーニングが推奨されている。
モデルがIQAデータセットのストリームから継続的に学習するBIQAの継続的学習を策定する。
論文 参考訳(メタデータ) (2021-02-19T03:07:01Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
我々は,テキスト化BIQAモデルを開発し,それを合成的および現実的歪みの両方で訓練するアプローチを提案する。
我々は、多数の画像ペアに対してBIQAのためのディープニューラルネットワークを最適化するために、忠実度損失を用いる。
6つのIQAデータベースの実験は、実験室と野生動物における画像品質を盲目的に評価する学習手法の可能性を示唆している。
論文 参考訳(メタデータ) (2020-05-28T13:35:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。