論文の概要: TRIQA: Image Quality Assessment by Contrastive Pretraining on Ordered Distortion Triplets
- arxiv url: http://arxiv.org/abs/2507.12687v1
- Date: Wed, 16 Jul 2025 23:43:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.303458
- Title: TRIQA: Image Quality Assessment by Contrastive Pretraining on Ordered Distortion Triplets
- Title(参考訳): TRIQA:秩序付き歪トリプレットのコントラスト事前学習による画質評価
- Authors: Rajesh Sureddi, Saman Zadtootaghaj, Nabajeet Barman, Alan C. Bovik,
- Abstract要約: No-Reference (NR) IQA は参照画像がないため、特に困難である。
本稿では,限られた数の参照コンテンツ画像を用いて,カスタムデータセットを構築する新しい手法を提案する。
対照的な三重項学習を用いて品質認識モデルを訓練し、より少ないサンプルで効率的なトレーニングを可能にする。
- 参考スコア(独自算出の注目度): 31.2422359004089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image Quality Assessment (IQA) models aim to predict perceptual image quality in alignment with human judgments. No-Reference (NR) IQA remains particularly challenging due to the absence of a reference image. While deep learning has significantly advanced this field, a major hurdle in developing NR-IQA models is the limited availability of subjectively labeled data. Most existing deep learning-based NR-IQA approaches rely on pre-training on large-scale datasets before fine-tuning for IQA tasks. To further advance progress in this area, we propose a novel approach that constructs a custom dataset using a limited number of reference content images and introduces a no-reference IQA model that incorporates both content and quality features for perceptual quality prediction. Specifically, we train a quality-aware model using contrastive triplet-based learning, enabling efficient training with fewer samples while achieving strong generalization performance across publicly available datasets. Our repository is available at https://github.com/rajeshsureddi/triqa.
- Abstract(参考訳): 画像品質評価(IQA)モデルは、人間の判断に沿った知覚的画像品質を予測することを目的としている。
No-Reference (NR) IQA は参照画像がないため、特に困難である。
ディープラーニングはこの分野で大きく進歩してきたが、NR-IQAモデルの開発における大きなハードルは、主観的なラベル付きデータの可用性の制限である。
既存のディープラーニングベースのNR-IQAアプローチの多くは、IQAタスクを微調整する前に、大規模データセットの事前トレーニングに依存している。
この領域のさらなる進歩のために、限られた数の参照コンテンツ画像を用いてカスタムデータセットを構築する新しいアプローチを提案し、コンテンツと品質の両方を組み込んだ非参照IQAモデルを導入し、知覚的品質予測を行う。
具体的には、対照的な三重項学習を用いて品質認識モデルをトレーニングし、より少ないサンプルで効率的なトレーニングを可能にし、公開データセット間で強力な一般化性能を実現する。
私たちのリポジトリはhttps://github.com/rajeshsureddi/triqa.comで公開されています。
関連論文リスト
- DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [73.6767681305851]
野生のブラインド画像品質評価(IQA)は重大な課題を呈している。
大規模なトレーニングデータの収集が困難であることを考えると、厳密な一般化モデルを開発するために限られたデータを活用することは、未解決の問題である。
事前訓練されたテキスト・ツー・イメージ(T2I)拡散モデルの堅牢な画像認識能力により,新しいIQA法,拡散先行に基づくIQAを提案する。
論文 参考訳(メタデータ) (2024-05-30T12:32:35Z) - Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLMに基づく画像品質評価(IQA)は、画像品質を言語的に記述し、人間の表現に合わせることを目指している。
野生における画像品質評価(DepictQA-Wild)について紹介する。
本手法は,評価タスクと比較タスク,簡潔かつ詳細な応答,完全参照,非参照シナリオを含む多機能IQAタスクパラダイムを含む。
論文 参考訳(メタデータ) (2024-05-29T07:49:15Z) - Cross-IQA: Unsupervised Learning for Image Quality Assessment [3.2287957986061038]
本稿では,視覚変換器(ViT)モデルに基づく非参照画像品質評価(NR-IQA)手法を提案する。
提案手法は,ラベルのない画像データから画像品質の特徴を学習することができる。
実験結果から,Cross-IQAは低周波劣化情報の評価において最先端の性能が得られることが示された。
論文 参考訳(メタデータ) (2024-05-07T13:35:51Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
本稿では,AI生成画像品質評価モデル(MA-AGIQA)を提案する。
セマンティックインフォームドガイダンスを使用して意味情報を感知し、慎重に設計されたテキストプロンプトを通してセマンティックベクターを抽出する。
最先端のパフォーマンスを実現し、AI生成画像の品質を評価する上で優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-04-27T02:40:36Z) - Learning Generalizable Perceptual Representations for Data-Efficient
No-Reference Image Quality Assessment [7.291687946822539]
最先端のNR-IQA技術の大きな欠点は、多数の人間のアノテーションに依存していることである。
低レベルな特徴の学習を、新しい品質に配慮したコントラスト損失を導入することで、歪みタイプの学習を可能にする。
両経路からゼロショット品質の予測を、完全に盲目な環境で設計する。
論文 参考訳(メタデータ) (2023-12-08T05:24:21Z) - Image Quality Assessment: Integrating Model-Centric and Data-Centric
Approaches [20.931709027443706]
画像品質評価(IQA)は過去10年間で著しく進歩している。
ほぼ全員が、モデルとデータという2つの重要なコンポーネントを独立して考えています。
論文 参考訳(メタデータ) (2022-07-29T16:23:57Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
本稿では,CNNバックボーンとトランスフォーマーエンコーダを用いて特徴抽出を行うIQAフレームワークを提案する。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
論文 参考訳(メタデータ) (2021-12-01T13:23:00Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
視覚的画像品質評価(BIQA)のための簡易かつ効果的な連続学習法を提案する。
このアプローチの重要なステップは、トレーニング済みのディープニューラルネットワーク(DNN)のすべての畳み込みフィルタを凍結して、安定性を明示的に保証することです。
我々は、各新しいIQAデータセット(タスク)に予測ヘッドを割り当て、対応する正規化パラメータをロードして品質スコアを生成する。
最終的な品質推定は、軽量な$K$-meansゲーティング機構で、すべての頭からの予測の重み付け総和によって計算される。
論文 参考訳(メタデータ) (2021-07-28T15:21:01Z) - Continual Learning for Blind Image Quality Assessment [80.55119990128419]
ブラインド画像品質評価(BIQA)モデルは、サブポピュレーションシフトに継続的に適応できない。
最近の研究では、利用可能なすべての人間評価のIQAデータセットの組み合わせに関するBIQAメソッドのトレーニングが推奨されている。
モデルがIQAデータセットのストリームから継続的に学習するBIQAの継続的学習を策定する。
論文 参考訳(メタデータ) (2021-02-19T03:07:01Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
本稿では,深層メタラーニングに基づく非参照IQA尺度を提案する。
まず、様々な歪みに対してNR-IQAタスクを収集する。
次にメタラーニングを用いて、多彩な歪みによって共有される事前知識を学習する。
大規模な実験により、提案された計量は最先端の技術を大きなマージンで上回ることを示した。
論文 参考訳(メタデータ) (2020-04-11T23:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。