論文の概要: Enhancing Online Continual Learning with Plug-and-Play State Space Model and Class-Conditional Mixture of Discretization
- arxiv url: http://arxiv.org/abs/2412.18177v1
- Date: Tue, 24 Dec 2024 05:25:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:56:52.081220
- Title: Enhancing Online Continual Learning with Plug-and-Play State Space Model and Class-Conditional Mixture of Discretization
- Title(参考訳): プラグ・アンド・プレイ状態空間モデルと離散化のクラス・コンディショナル混合によるオンライン連続学習の強化
- Authors: Sihao Liu, Yibo Yang, Xiaojie Li, David A. Clifton, Bernard Ghanem,
- Abstract要約: オンライン連続学習(OCL)は、以前に学習したタスクの知識を保持しながら、一度だけ現れるデータストリームから新しいタスクを学習することを目指している。
既存の方法の多くはリプレイに依存しており、正規化や蒸留によるメモリ保持の強化に重点を置いている。
既存のほとんどのメソッドに組み込むことができ、適応性を直接改善できるプラグイン・アンド・プレイモジュールであるS6MODを導入する。
- 参考スコア(独自算出の注目度): 72.81319836138347
- License:
- Abstract: Online continual learning (OCL) seeks to learn new tasks from data streams that appear only once, while retaining knowledge of previously learned tasks. Most existing methods rely on replay, focusing on enhancing memory retention through regularization or distillation. However, they often overlook the adaptability of the model, limiting the ability to learn generalizable and discriminative features incrementally from online training data. To address this, we introduce a plug-and-play module, S6MOD, which can be integrated into most existing methods and directly improve adaptability. Specifically, S6MOD introduces an extra branch after the backbone, where a mixture of discretization selectively adjusts parameters in a selective state space model, enriching selective scan patterns such that the model can adaptively select the most sensitive discretization method for current dynamics. We further design a class-conditional routing algorithm for dynamic, uncertainty-based adjustment and implement a contrastive discretization loss to optimize it. Extensive experiments combining our module with various models demonstrate that S6MOD significantly enhances model adaptability, leading to substantial performance gains and achieving the state-of-the-art results.
- Abstract(参考訳): オンライン連続学習(OCL)は、以前に学習したタスクの知識を保持しながら、一度だけ現れるデータストリームから新しいタスクを学習することを目指している。
既存の方法の多くはリプレイに依存しており、正規化や蒸留によるメモリ保持の強化に重点を置いている。
しかし、彼らはしばしばモデルの適応性を見落とし、オンラインのトレーニングデータから一般化可能で差別的な特徴を段階的に学習する能力を制限する。
これを解決するために,既存のほとんどのメソッドに統合し,適応性を直接改善できるプラグイン・アンド・プレイモジュールであるS6MODを導入する。
具体的には、S6MODは、選択状態空間モデルにおけるパラメータを選択的に調整し、モデルが現在の力学に対して最も敏感な離散化法を適応的に選択できるように選択走査パターンをリッチ化する、バックボーン後の余分な分岐を導入する。
さらに、動的で不確実性に基づく調整のためのクラス条件ルーティングアルゴリズムを設計し、それを最適化するために対照的な離散化損失を実装する。
我々のモジュールと様々なモデルを組み合わせた実験により、S6MODはモデル適応性を著しく向上し、性能が大幅に向上し、最先端の結果が達成されることを示した。
関連論文リスト
- Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
一般状態空間モデル(英: General State-space Model, SSM)は、統計機械学習において広く用いられ、時系列データに対して最も古典的な生成モデルの一つである。
オンラインシーケンシャルIWAE(OSIWAE)は、潜在状態の推測のためのモデルパラメータとマルコフ認識モデルの両方のオンライン学習を可能にする。
このアプローチは、最近提案されたオンライン変分SMC法よりも理論的によく確立されている。
論文 参考訳(メタデータ) (2024-11-04T16:12:37Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - Dynamic Feature Learning and Matching for Class-Incremental Learning [20.432575325147894]
CIL(Class-incremental Learning)は,従来のクラスを破滅的に忘れることなく,新しいクラスを学習する方法として登場した。
本稿では,動的特徴学習とマッチング(DFLM)モデルを提案する。
提案手法は既存手法に比べて大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2024-05-14T12:17:19Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
本稿では,視覚言語モデルを用いた漸進的学習における長期的忘れを緩和するパラメータ効率の連続学習フレームワークを提案する。
提案手法では,Mixture-of-Experts (MoE)アダプタの統合により,事前学習したCLIPモデルの動的拡張を行う。
視覚言語モデルのゼロショット認識能力を維持するために,分布判別オートセレクタを提案する。
論文 参考訳(メタデータ) (2024-03-18T08:00:23Z) - Learning an evolved mixture model for task-free continual learning [11.540150938141034]
タスク自由連続学習(TFCL)では,非定常データストリーム上で,明示的なタスク情報を持たないモデルを訓練する。
メモリ過負荷を回避するため,記憶されているサンプルを選択的に削除する2つの単純なドロップアウト機構を導入する。
論文 参考訳(メタデータ) (2022-07-11T16:01:27Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
本稿では,動的一般化のためのマルチヘッドダイナミックスモデルを学習するモデルベース強化学習アルゴリズムを提案する。
文脈学習は,過去の経験から得られる動的情報からコンテキスト潜在ベクトルにエンコードする。
提案手法は,最先端のRL法と比較して,様々な制御タスクにおいて優れたゼロショット一般化性能を示す。
論文 参考訳(メタデータ) (2020-10-26T03:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。