論文の概要: Patch-level instance-group discrimination with pretext-invariant
learning for colitis scoring
- arxiv url: http://arxiv.org/abs/2207.05192v1
- Date: Mon, 11 Jul 2022 21:06:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-13 14:02:37.073043
- Title: Patch-level instance-group discrimination with pretext-invariant
learning for colitis scoring
- Title(参考訳): テキスト不変学習を用いた大腸炎スコアリングのためのパッチレベルインスタンス群判別
- Authors: Ziang Xu, Sharib Ali, Soumya Gupta, Simon Leedham, James E East, Jens
Rittscher
- Abstract要約: 自己教師型学習(SSL)のためのプリテキスト不変表現学習(PLD-PIRL)を用いたパッチレベルの新しいインスタンスグループ識別手法を提案する。
本実験では,ベースライン教師付きネットワークや最先端SSL方式と比較して,精度とロバスト性の向上を実証した。
- 参考スコア(独自算出の注目度): 2.691339855008848
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Inflammatory bowel disease (IBD), in particular ulcerative colitis (UC), is
graded by endoscopists and this assessment is the basis for risk stratification
and therapy monitoring. Presently, endoscopic characterisation is largely
operator dependant leading to sometimes undesirable clinical outcomes for
patients with IBD. We focus on the Mayo Endoscopic Scoring (MES) system which
is widely used but requires the reliable identification of subtle changes in
mucosal inflammation. Most existing deep learning classification methods cannot
detect these fine-grained changes which make UC grading such a challenging
task. In this work, we introduce a novel patch-level instance-group
discrimination with pretext-invariant representation learning (PLD-PIRL) for
self-supervised learning (SSL). Our experiments demonstrate both improved
accuracy and robustness compared to the baseline supervised network and several
state-of-the-art SSL methods. Compared to the baseline (ResNet50) supervised
classification our proposed PLD-PIRL obtained an improvement of 4.75% on
hold-out test data and 6.64% on unseen center test data for top-1 accuracy.
- Abstract(参考訳): 炎症性腸疾患(IBD),特に潰瘍性大腸炎(UC)は内科医によって評価され,リスク層化・治療モニタリングの基礎となっている。
現在, 内視鏡的特徴化は, IBD患者に対して望ましくない臨床結果をもたらすことがほとんどである。
広範に使用されているが粘膜炎症の微妙な変化の信頼性が要求されるマヨ内視鏡検査(MES)システムに注目した。
既存のディープラーニングの分類手法では、これらの微粒な変化を検出できないため、UCのグレーディングは難しい課題である。
本研究では,自己教師付き学習(SSL)のためのプリテキスト不変表現学習(PLD-PIRL)を用いたパッチレベルの新しいインスタンスグループ識別手法を提案する。
本実験では,ベースライン教師付きネットワークや最先端SSL方式と比較して,精度とロバスト性の向上を実証した。
ベースライン(ResNet50)の分類と比較すると,提案したPLD-PIRLはホールドアウトテストデータでは4.75%,センターテストデータでは6.64%,トップ1の精度では6.64%向上した。
関連論文リスト
- Ordinal Multiple-instance Learning for Ulcerative Colitis Severity Estimation with Selective Aggregated Transformer [4.2875024530011085]
選択的アグリゲータトークンを用いた変圧器による患者レベルの重症度推定法を提案する。
本手法は, 各患者で撮影した画像から, 重篤な部分の特徴を効果的に収集することができる。
提案手法の2つのデータセットに対する有効性を示す実験を行った。
論文 参考訳(メタデータ) (2024-11-22T06:11:35Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - SPLAL: Similarity-based pseudo-labeling with alignment loss for
semi-supervised medical image classification [11.435826510575879]
半教師付き学習(SSL)メソッドはラベル付きデータとラベルなしデータの両方を活用することで課題を軽減することができる。
医用画像分類のためのSSL法では,(1)ラベルなしデータセットの画像に対する信頼性の高い擬似ラベルの推定,(2)クラス不均衡によるバイアスの低減という2つの課題に対処する必要がある。
本稿では,これらの課題を効果的に解決する新しいSSLアプローチであるSPLALを提案する。
論文 参考訳(メタデータ) (2023-07-10T14:53:24Z) - SSL-CPCD: Self-supervised learning with composite pretext-class
discrimination for improved generalisability in endoscopic image analysis [3.1542695050861544]
深層学習に基づく教師付き手法は医用画像解析において広く普及している。
大量のトレーニングデータと、目に見えないデータセットに対する一般的な問題に直面する必要がある。
本稿では,加法的角マージンを用いたパッチレベルのインスタンスグループ識別とクラス間変動のペナル化について検討する。
論文 参考訳(メタデータ) (2023-05-31T21:28:08Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - An interpretable machine learning system for colorectal cancer diagnosis from pathology slides [2.7968867060319735]
本研究は,約10,500個のWSIを用いて,最大規模のWSI南極サンプルデータセットを用いて行った。
提案手法は, パッチベースのタイルに対して, 異形成の重症度に基づくクラスを推定する。
病理学者が導入したドメイン知識を活用するために、解釈可能な混合スーパービジョンスキームで訓練されている。
論文 参考訳(メタデータ) (2023-01-06T17:10:32Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
異常検出は、通常のデータ分布から逸脱したサンプルを特定することを目的としている。
コントラスト学習は、異常の効果的な識別を可能にする表現のサンプル化に成功している。
汚染耐性異常検出のための新しい階層型半教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T18:49:26Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - Dynamic Bank Learning for Semi-supervised Federated Image Diagnosis with
Class Imbalance [65.61909544178603]
クラス不均衡半教師付きFL(imFed-Semi)の実用的かつ困難な問題について検討する。
このImFed-Semi問題は、クラス比例情報を利用してクライアントトレーニングを改善する新しい動的銀行学習方式によって解決される。
25,000個のCTスライスによる頭蓋内出血診断と10,015個の皮膚内視鏡画像による皮膚病変診断の2つの公開実世界の医療データセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-06-27T06:51:48Z) - Coherence Learning using Keypoint-based Pooling Network for Accurately
Assessing Radiographic Knee Osteoarthritis [18.47511520060851]
膝関節症(英語: Knee osteoarthritis, OA)は、世界中の高齢者に影響を及ぼす一般的な変性関節疾患である。
現在臨床症状のある膝OAグレーティングシステムは観察対象であり、レイター間の相違に悩まされている。
本稿では,複合度と微粒度を同時に評価するためのコンピュータ支援型診断手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T19:59:13Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。