Offline Equilibrium Finding
- URL: http://arxiv.org/abs/2207.05285v1
- Date: Tue, 12 Jul 2022 03:41:06 GMT
- Title: Offline Equilibrium Finding
- Authors: Shuxin Li, Xinrun Wang, Jakub Cerny, Youzhi Zhang, Hau Chan, Bo An
- Abstract summary: We aim to generalize Offline RL to a multi-agent or multiplayer-game setting.
Very little research has been done in this area, as the progress is hindered by the lack of standardized datasets and meaningful benchmarks.
Our two model-based algorithms -- OEF-PSRO and OEF-CFR -- are adaptations of the widely-used equilibrium finding algorithms Deep CFR and PSRO in the context of offline learning.
- Score: 40.08360411502593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline reinforcement learning (Offline RL) is an emerging field that has
recently begun gaining attention across various application domains due to its
ability to learn behavior from earlier collected datasets. Using logged data is
imperative when further interaction with the environment is expensive
(computationally or otherwise), unsafe, or entirely unfeasible. Offline RL
proved very successful, paving a path to solving previously intractable
real-world problems, and we aim to generalize this paradigm to a multi-agent or
multiplayer-game setting. Very little research has been done in this area, as
the progress is hindered by the lack of standardized datasets and meaningful
benchmarks. In this work, we coin the term offline equilibrium finding (OEF) to
describe this area and construct multiple datasets consisting of strategies
collected across a wide range of games using several established methods. We
also propose a benchmark method -- an amalgamation of a behavior-cloning and a
model-based algorithm. Our two model-based algorithms -- OEF-PSRO and OEF-CFR
-- are adaptations of the widely-used equilibrium finding algorithms Deep CFR
and PSRO in the context of offline learning. In the empirical part, we evaluate
the performance of the benchmark algorithms on the constructed datasets. We
hope that our efforts may help to accelerate research in large-scale
equilibrium finding. Datasets and code are available at
https://github.com/SecurityGames/oef.
Related papers
- OGBench: Benchmarking Offline Goal-Conditioned RL [72.00291801676684]
offline goal-conditioned reinforcement learning (GCRL) is a major problem in reinforcement learning.
We propose OGBench, a new, high-quality benchmark for algorithms research in offline goal-conditioned RL.
arXiv Detail & Related papers (2024-10-26T06:06:08Z) - Scalable Offline Reinforcement Learning for Mean Field Games [6.8267158622784745]
Off-MMD is a novel mean-field RL algorithm that approximates equilibrium policies in mean-field games using purely offline data.
Our algorithm scales to complex environments and demonstrates strong performance on benchmark tasks like crowd exploration or navigation.
arXiv Detail & Related papers (2024-10-23T14:16:34Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
offline reinforcement learning algorithms have proven effective on datasets highly connected to the target downstream task.
We show that existing methods struggle with diverse data: their performance considerably deteriorates as data collected for related but different tasks is simply added to the offline buffer.
We show that scale, more than algorithmic considerations, is the key factor influencing performance.
arXiv Detail & Related papers (2024-03-19T18:57:53Z) - Improving and Benchmarking Offline Reinforcement Learning Algorithms [87.67996706673674]
This work aims to bridge the gaps caused by low-level choices and datasets.
We empirically investigate 20 implementation choices using three representative algorithms.
We find two variants CRR+ and CQL+ achieving new state-of-the-art on D4RL.
arXiv Detail & Related papers (2023-06-01T17:58:46Z) - Bridging the Gap Between Offline and Online Reinforcement Learning
Evaluation Methodologies [6.303272140868826]
Reinforcement learning (RL) has shown great promise with algorithms learning in environments with large state and action spaces.
Current deep RL algorithms require a tremendous amount of environment interactions for learning.
offline RL algorithms try to address this issue by bootstrapping the learning process from existing logged data.
arXiv Detail & Related papers (2022-12-15T20:36:10Z) - A Survey on Offline Reinforcement Learning: Taxonomy, Review, and Open
Problems [0.0]
Reinforcement learning (RL) has experienced a dramatic increase in popularity.
There is still a wide range of domains inaccessible to RL due to the high cost and danger of interacting with the environment.
offline RL is a paradigm that learns exclusively from static datasets of previously collected interactions.
arXiv Detail & Related papers (2022-03-02T20:05:11Z) - Interpretable performance analysis towards offline reinforcement
learning: A dataset perspective [6.526790418943535]
We propose a two-fold taxonomy for existing offline RL algorithms.
We explore the correlation between the performance of different types of algorithms and the distribution of actions under states.
We create a benchmark platform on the Atari domain, entitled easy go (RLEG), at an estimated cost of more than 0.3 million dollars.
arXiv Detail & Related papers (2021-05-12T07:17:06Z) - RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning [108.9599280270704]
We propose a benchmark called RL Unplugged to evaluate and compare offline RL methods.
RL Unplugged includes data from a diverse range of domains including games and simulated motor control problems.
We will release data for all our tasks and open-source all algorithms presented in this paper.
arXiv Detail & Related papers (2020-06-24T17:14:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.