OGBench: Benchmarking Offline Goal-Conditioned RL
- URL: http://arxiv.org/abs/2410.20092v1
- Date: Sat, 26 Oct 2024 06:06:08 GMT
- Title: OGBench: Benchmarking Offline Goal-Conditioned RL
- Authors: Seohong Park, Kevin Frans, Benjamin Eysenbach, Sergey Levine,
- Abstract summary: offline goal-conditioned reinforcement learning (GCRL) is a major problem in reinforcement learning.
We propose OGBench, a new, high-quality benchmark for algorithms research in offline goal-conditioned RL.
- Score: 72.00291801676684
- License:
- Abstract: Offline goal-conditioned reinforcement learning (GCRL) is a major problem in reinforcement learning (RL) because it provides a simple, unsupervised, and domain-agnostic way to acquire diverse behaviors and representations from unlabeled data without rewards. Despite the importance of this setting, we lack a standard benchmark that can systematically evaluate the capabilities of offline GCRL algorithms. In this work, we propose OGBench, a new, high-quality benchmark for algorithms research in offline goal-conditioned RL. OGBench consists of 8 types of environments, 85 datasets, and reference implementations of 6 representative offline GCRL algorithms. We have designed these challenging and realistic environments and datasets to directly probe different capabilities of algorithms, such as stitching, long-horizon reasoning, and the ability to handle high-dimensional inputs and stochasticity. While representative algorithms may rank similarly on prior benchmarks, our experiments reveal stark strengths and weaknesses in these different capabilities, providing a strong foundation for building new algorithms. Project page: https://seohong.me/projects/ogbench
Related papers
- ODRL: A Benchmark for Off-Dynamics Reinforcement Learning [59.72217833812439]
We introduce ODRL, the first benchmark tailored for evaluating off-dynamics RL methods.
ODRL contains four experimental settings where the source and target domains can be either online or offline.
We conduct extensive benchmarking experiments, which show that no method has universal advantages across varied dynamics shifts.
arXiv Detail & Related papers (2024-10-28T05:29:38Z) - Accelerating Goal-Conditioned RL Algorithms and Research [17.155006770675904]
Self-supervised goal-conditioned reinforcement learning (GCRL) agents discover new behaviors by learning from the goals achieved during unstructured interaction with the environment.
These methods have failed to see similar success due to a lack of data from slow environment simulations as well as a lack of stable algorithms.
We release a benchmark (JaxGCRL) for self-supervised GCRL, enabling researchers to train agents for millions of environment steps in minutes on a single GPU.
arXiv Detail & Related papers (2024-08-20T17:58:40Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - Foundation Policies with Hilbert Representations [54.44869979017766]
We propose an unsupervised framework to pre-train generalist policies from unlabeled offline data.
Our key insight is to learn a structured representation that preserves the temporal structure of the underlying environment.
Our experiments show that our unsupervised policies can solve goal-conditioned and general RL tasks in a zero-shot fashion.
arXiv Detail & Related papers (2024-02-23T19:09:10Z) - SMORE: Score Models for Offline Goal-Conditioned Reinforcement Learning [33.125187822259186]
Offline Goal-Conditioned Reinforcement Learning (GCRL) is tasked with learning to achieve multiple goals in an environment purely from offline datasets using sparse reward functions.
We present a novel approach to GCRL under a new lens of mixture-distribution matching, leading to our discriminator-free method: SMORe.
arXiv Detail & Related papers (2023-11-03T16:19:33Z) - HIQL: Offline Goal-Conditioned RL with Latent States as Actions [81.67963770528753]
We propose a hierarchical algorithm for goal-conditioned RL from offline data.
We show how this hierarchical decomposition makes our method robust to noise in the estimated value function.
Our method can solve long-horizon tasks that stymie prior methods, can scale to high-dimensional image observations, and can readily make use of action-free data.
arXiv Detail & Related papers (2023-07-22T00:17:36Z) - Improving and Benchmarking Offline Reinforcement Learning Algorithms [87.67996706673674]
This work aims to bridge the gaps caused by low-level choices and datasets.
We empirically investigate 20 implementation choices using three representative algorithms.
We find two variants CRR+ and CQL+ achieving new state-of-the-art on D4RL.
arXiv Detail & Related papers (2023-06-01T17:58:46Z) - A Strong Baseline for Batch Imitation Learning [25.392006064406967]
We provide an easy-to-implement, novel algorithm for imitation learning under a strict data paradigm.
This paradigm allows our algorithm to be used for environments in which safety or cost are of critical concern.
arXiv Detail & Related papers (2023-02-06T14:03:33Z) - Offline Equilibrium Finding [40.08360411502593]
We aim to generalize Offline RL to a multi-agent or multiplayer-game setting.
Very little research has been done in this area, as the progress is hindered by the lack of standardized datasets and meaningful benchmarks.
Our two model-based algorithms -- OEF-PSRO and OEF-CFR -- are adaptations of the widely-used equilibrium finding algorithms Deep CFR and PSRO in the context of offline learning.
arXiv Detail & Related papers (2022-07-12T03:41:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.