Implementation and readout of maximally entangled two-qubit gates quantum circuits in a superconducting quantum processor
- URL: http://arxiv.org/abs/2503.24274v1
- Date: Mon, 31 Mar 2025 16:20:56 GMT
- Title: Implementation and readout of maximally entangled two-qubit gates quantum circuits in a superconducting quantum processor
- Authors: Viviana Stasino, Pasquale Mastrovito, Carlo Cosenza, Anna Levochkina, Martina Esposito, Domenico Montemurro, Giovanni P. Pepe, Alessandro Bruno, Francesco Tafuri, Davide Massarotti, Halima G. Ahmad,
- Abstract summary: In a transmon-based 5-qubit superconducting quantum processor, we compared the performance of quantum circuits involving an increasing level of complexity.<n>Here we report the results obtained from the analysis of the outputs of quantum circuits using two readout paradigms.<n>The first method is suitable for single-qubit circuits, while the second is essential for accurately interpreting the outputs of circuits involving two-qubit gates.
- Score: 32.40607221598716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Besides noticeable challenges in implementing low-error single- and two-qubit quantum gates in superconducting quantum processors, the readout technique and analysis are a key factor in determining the efficiency and performance of quantum processors. Being able to efficiently implement quantum algorithms involving entangling gates and asses their output is mandatory for quantum utility. In a transmon-based 5-qubit superconducting quantum processor, we compared the performance of quantum circuits involving an increasing level of complexity, from single-qubit circuits to maximally entangled Bell circuits. This comparison highlighted the importance of the readout analysis and helped us optimize the protocol for more advanced quantum algorithms. Here we report the results obtained from the analysis of the outputs of quantum circuits using two readout paradigms, referred to as "multiplied readout probabilities" and "conditional readout probabilities". The first method is suitable for single-qubit circuits, while the second is essential for accurately interpreting the outputs of circuits involving two-qubit gates.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Lightcone Bounds for Quantum Circuit Mapping via Uncomplexity [1.0360348400670518]
We show that a minimal SWAP-gate count for executing a quantum circuit on a device emerges via the minimization of the distance between quantum states.
This work constitutes the first use of quantum circuit uncomplexity to practically-relevant quantum computing.
arXiv Detail & Related papers (2024-02-01T10:32:05Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Optimal Partitioning of Quantum Circuits using Gate Cuts and Wire Cuts [1.0507729375838437]
A limited number of qubits, high error rates, and limited qubit connectivity are major challenges for effective near-term quantum computations.
Quantum circuit partitioning divides a quantum computation into a set of computations that include smaller-scale quantum (sub)circuits and classical postprocessing steps.
We develop an optimal partitioning method based on recent advances in quantum circuit knitting.
arXiv Detail & Related papers (2023-08-18T13:59:55Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Compact quantum kernel-based binary classifier [2.0684234025249717]
We present the simplest quantum circuit for constructing a kernel-based binary classifier.
The number of qubits is reduced by two and the number of steps is reduced linearly.
Our design also provides a straightforward way to handle an imbalanced data set.
arXiv Detail & Related papers (2022-02-04T14:30:53Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.