Diversity-aware social robots meet people: beyond context-aware embodied
AI
- URL: http://arxiv.org/abs/2207.05372v1
- Date: Tue, 12 Jul 2022 08:06:25 GMT
- Title: Diversity-aware social robots meet people: beyond context-aware embodied
AI
- Authors: Carmine Recchiuto, Antonio Sgorbissa
- Abstract summary: The article introduces the concept of "diversity-aware" robotics and discusses the need to develop computational models to embed robots with diversity-awareness.
The article discusses possible technical solutions based on Ontologies and Bayesian Networks, starting from previous experience with culturally competent robots.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The article introduces the concept of "diversity-aware" robotics and
discusses the need to develop computational models to embed robots with
diversity-awareness: that is, robots capable of adapting and re-configuring
their behavior to recognize, respect, and value the uniqueness of the person
they interact with to promote inclusion regardless of their age, race, gender,
cognitive or physical capabilities, etc. Finally, the article discusses
possible technical solutions based on Ontologies and Bayesian Networks,
starting from previous experience with culturally competent robots.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - HARMONIC: Cognitive and Control Collaboration in Human-Robotic Teams [0.0]
We demonstrate a cognitive strategy for robots in human-robot teams that incorporates metacognition, natural language communication, and explainability.
The system is embodied using the HARMONIC architecture that flexibly integrates cognitive and control capabilities.
arXiv Detail & Related papers (2024-09-26T16:48:21Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - Cybersecurity and Embodiment Integrity for Modern Robots: A Conceptual Framework [3.29295880899738]
We show how cyberattacks on different devices can have radically different consequences on the robot's ability to complete its tasks.
We also claim that modern robots should have self-awareness for what it concerns such aspects.
We show that achieving these propositions requires that robots possess at least three properties that conceptually link devices and tasks.
arXiv Detail & Related papers (2024-01-15T15:46:38Z) - Singing the Body Electric: The Impact of Robot Embodiment on User
Expectations [7.408858358967414]
Users develop mental models of robots to conceptualize what kind of interactions they can have with those robots.
conceptualizations are often formed before interactions with the robot and are based only on observing the robot's physical design.
We propose to use multimodal features of robot embodiments to predict what kinds of expectations users will have about a given robot's social and physical capabilities.
arXiv Detail & Related papers (2024-01-13T04:42:48Z) - Proceeding of the 1st Workshop on Social Robots Personalisation At the
crossroads between engineering and humanities (CONCATENATE) [37.838596863193565]
This workshop aims to raise an interdisciplinary discussion on personalisation in robotics.
It aims at bringing researchers from different fields together to propose guidelines for personalisation.
arXiv Detail & Related papers (2023-07-10T11:11:24Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - A Capability and Skill Model for Heterogeneous Autonomous Robots [69.50862982117127]
capability modeling is considered a promising approach to semantically model functions provided by different machines.
This contribution investigates how to apply and extend capability models from manufacturing to the field of autonomous robots.
arXiv Detail & Related papers (2022-09-22T10:13:55Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
This paper presents several human-robot systems that utilize spatial computing to enable novel robot use cases.
The combination of spatial computing and egocentric sensing on mixed reality devices enables them to capture and understand human actions and translate these to actions with spatial meaning.
arXiv Detail & Related papers (2022-02-03T10:04:26Z) - Neuroscience-inspired perception-action in robotics: applying active
inference for state estimation, control and self-perception [2.1067139116005595]
We discuss how neuroscience findings open up opportunities to improve current estimation and control algorithms in robotics.
This paper summarizes some experiments and lessons learned from developing such a computational model on real embodied platforms.
arXiv Detail & Related papers (2021-05-10T10:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.