A developmental approach for training deep belief networks
- URL: http://arxiv.org/abs/2207.05473v1
- Date: Tue, 12 Jul 2022 11:37:58 GMT
- Title: A developmental approach for training deep belief networks
- Authors: Matteo Zambra, Alberto Testolin, Michele De Filippo De Grazia, Marco
Zorzi
- Abstract summary: Deep belief networks (DBNs) are neural networks that can extract rich internal representations of the environment from the sensory data.
We present iDBN, an iterative learning algorithm for DBNs that allows to jointly update the connection weights across all layers of the hierarchy.
Our work paves the way to the use of iDBN for modeling neurocognitive development.
- Score: 0.46699574490885926
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep belief networks (DBNs) are stochastic neural networks that can extract
rich internal representations of the environment from the sensory data. DBNs
had a catalytic effect in triggering the deep learning revolution,
demonstrating for the very first time the feasibility of unsupervised learning
in networks with many layers of hidden neurons. Thanks to their biological and
cognitive plausibility, these hierarchical architectures have been also
successfully exploited to build computational models of human perception and
cognition in a variety of domains. However, learning in DBNs is usually carried
out in a greedy, layer-wise fashion, which does not allow to simulate the
holistic development of cortical circuits. Here we present iDBN, an iterative
learning algorithm for DBNs that allows to jointly update the connection
weights across all layers of the hierarchy. We test our algorithm on two
different sets of visual stimuli, and we show that network development can also
be tracked in terms of graph theoretical properties. DBNs trained using our
iterative approach achieve a final performance comparable to that of the greedy
counterparts, at the same time allowing to accurately analyze the gradual
development of internal representations in the generative model. Our work paves
the way to the use of iDBN for modeling neurocognitive development.
Related papers
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.
We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.
We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - Peer-to-Peer Learning Dynamics of Wide Neural Networks [10.179711440042123]
We provide an explicit, non-asymptotic characterization of the learning dynamics of wide neural networks trained using popularDGD algorithms.
We validate our analytical results by accurately predicting error and error and for classification tasks.
arXiv Detail & Related papers (2024-09-23T17:57:58Z) - From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks [47.13391046553908]
In artificial networks, the effectiveness of these models relies on their ability to build task specific representation.
Prior studies highlight that different initializations can place networks in either a lazy regime, where representations remain static, or a rich/feature learning regime, where representations evolve dynamically.
These solutions capture the evolution of representations and the Neural Kernel across the spectrum from the rich to the lazy regimes.
arXiv Detail & Related papers (2024-09-22T23:19:04Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Identifying Equivalent Training Dynamics [3.793387630509845]
We develop a framework for identifying conjugate and non-conjugate training dynamics.
By leveraging advances in Koopman operator theory, we demonstrate that comparing Koopman eigenvalues can correctly identify a known equivalence between online mirror descent and online gradient descent.
We then utilize our approach to: (a) identify non-conjugate training dynamics between shallow and wide fully connected neural networks; (b) characterize the early phase of training dynamics in convolutional neural networks; (c) uncover non-conjugate training dynamics in Transformers that do and do not undergo grokking.
arXiv Detail & Related papers (2023-02-17T22:15:20Z) - Developing hierarchical anticipations via neural network-based event
segmentation [14.059479351946386]
We model the development of hierarchical predictions via autonomously learned latent event codes.
We present a hierarchical recurrent neural network architecture, whose inductive learning biases foster the development of sparsely changing latent state.
A higher level network learns to predict the situations in which the latent states tend to change.
arXiv Detail & Related papers (2022-06-04T18:54:31Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
We describe an implementation of the common model of cognition grounded in neural generative coding and holographic associative memory.
The proposed system creates the groundwork for developing agents that learn continually from diverse tasks as well as model human performance at larger scales.
arXiv Detail & Related papers (2021-05-15T22:55:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.