論文の概要: Skeletal Human Action Recognition using Hybrid Attention based Graph
Convolutional Network
- arxiv url: http://arxiv.org/abs/2207.05493v1
- Date: Tue, 12 Jul 2022 12:22:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-13 20:10:41.588632
- Title: Skeletal Human Action Recognition using Hybrid Attention based Graph
Convolutional Network
- Title(参考訳): ハイブリッドアテンションに基づくグラフ畳み込みネットワークを用いた人体行動認識
- Authors: Hao Xing, Darius Burschka
- Abstract要約: 相対的距離と相対的角度情報に基づいて局所的注意マップをグローバルに拡張する適応型空間的注意層を提案する。
我々は,頭部,手,足を結ぶ新しい初期グラフ隣接行列を設計し,行動認識精度の点で目に見える改善点を示す。
提案モデルは,日常生活における人間活動の分野における大規模かつ挑戦的な2つのデータセットを用いて評価する。
- 参考スコア(独自算出の注目度): 3.261599248682793
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In skeleton-based action recognition, Graph Convolutional Networks model
human skeletal joints as vertices and connect them through an adjacency matrix,
which can be seen as a local attention mask. However, in most existing Graph
Convolutional Networks, the local attention mask is defined based on natural
connections of human skeleton joints and ignores the dynamic relations for
example between head, hands and feet joints. In addition, the attention
mechanism has been proven effective in Natural Language Processing and image
description, which is rarely investigated in existing methods. In this work, we
proposed a new adaptive spatial attention layer that extends local attention
map to global based on relative distance and relative angle information.
Moreover, we design a new initial graph adjacency matrix that connects head,
hands and feet, which shows visible improvement in terms of action recognition
accuracy. The proposed model is evaluated on two large-scale and challenging
datasets in the field of human activities in daily life: NTU-RGB+D and Kinetics
skeleton. The results demonstrate that our model has strong performance on both
dataset.
- Abstract(参考訳): スケルトンに基づく行動認識において、グラフ畳み込みネットワークは人間の骨格関節を頂点としてモデル化し、それらを隣接マトリックスを介して接続する。
しかし、既存のほとんどのグラフ畳み込みネットワークでは、局所的な注意マスクは人間の骨格関節の自然な接続に基づいて定義されており、頭、手、足関節などの動的関係を無視している。
また,注意機構は自然言語処理や画像記述において有効であることが証明されており,既存の手法ではめったに研究されていない。
本研究では,相対的距離と相対的角度情報に基づいて局所的注意マップをグローバルに拡張する適応型空間的注意層を提案する。
さらに,頭,手,足を結ぶ新しい初期グラフ隣接行列を設計し,行動認識精度の点で目に見える改善点を示す。
提案モデルは,ntu-rgb+dとkinetics skeletonの2つの大規模かつ挑戦的なデータセットを用いて評価した。
その結果,両データセットに強い性能が得られた。
関連論文リスト
- Understanding Spatio-Temporal Relations in Human-Object Interaction using Pyramid Graph Convolutional Network [2.223052975765005]
本稿では,人間と物体の相互作用を自動的に認識する新しいピラミッドグラフ畳み込みネットワーク(PGCN)を提案する。
このシステムは、映像データをグラフとして検出した結果から、人間と物体の2次元または3次元空間関係を表す。
我々は,人間と物体の相互作用認識の分野で,2つの挑戦的データセット上でモデルを評価した。
論文 参考訳(メタデータ) (2024-10-10T13:39:17Z) - Two-person Graph Convolutional Network for Skeleton-based Human
Interaction Recognition [11.650290790796323]
グラフ畳み込みネットワーク(GCN)は、骨格に基づく人間の行動認識領域において従来の手法より優れていた。
本稿では,関節間の空間的相互作用の相関を表す新しい2人グラフを提案する。
実験は、提案した2人グラフトポロジを利用する場合、相互作用と個々の動作の両方において精度の向上を示す。
論文 参考訳(メタデータ) (2022-08-12T08:50:15Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
本稿では,CD-JBF-GCNをエンコーダとし,ポーズ予測ヘッドをデコーダとして使用する新しい相関駆動型ジョイントボーン・フュージョングラフ畳み込みネットワークを提案する。
具体的には、CD-JBF-GCは、関節ストリームと骨ストリームの間の運動伝達を探索することができる。
自己教師型トレーニング段階におけるポーズ予測に基づくオートエンコーダにより、未ラベルデータから動作表現を学習することができる。
論文 参考訳(メタデータ) (2022-02-08T16:03:15Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
骨格に基づく行動分類のための新しい多言語時空間グラフネットワークを提案する。
2つの枝の枝からなるデュアルヘッドグラフネットワークを開発し、少なくとも2つの時間分解能を抽出する。
3つの大規模データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-08-10T09:25:07Z) - UNIK: A Unified Framework for Real-world Skeleton-based Action
Recognition [11.81043814295441]
UNIKは、データセットをまたいで一般化できる新しい骨格に基づく行動認識手法である。
実世界のビデオにおける行動認識のクロスドメイン一般化可能性について検討するため,提案したUNIKと同様に最先端のアプローチを再評価する。
その結果,提案したUNIKは,Poseticsを事前学習した上で,4つのターゲットアクション分類データセットに転送した場合に,最先端の処理性能を向上することがわかった。
論文 参考訳(メタデータ) (2021-07-19T02:00:28Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - Multi Scale Temporal Graph Networks For Skeleton-based Action
Recognition [5.970574258839858]
グラフ畳み込みネットワーク(GCN)は、関連するノードの特徴を効果的に捉え、モデルの性能を向上させる。
まず、時間的特徴と空間的特徴の整合性を無視し、特徴をノード単位とフレーム単位で抽出する。
本稿では,行動認識のための時間グラフネットワーク(TGN)と呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-05T08:08:25Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z) - Unifying Graph Embedding Features with Graph Convolutional Networks for
Skeleton-based Action Recognition [18.001693718043292]
本稿では,人行動認識のためのグラフ畳み込みネットワークに15のグラフ埋め込み機能を組み込んだ新しいフレームワークを提案する。
我々のモデルは,NTU-RGB+D,Kineetics,SYSU-3Dという3つの大規模データセットで検証されている。
論文 参考訳(メタデータ) (2020-03-06T02:31:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。