Autoencoding Conditional GAN for Portfolio Allocation Diversification
- URL: http://arxiv.org/abs/2207.05701v1
- Date: Fri, 17 Jun 2022 04:15:41 GMT
- Title: Autoencoding Conditional GAN for Portfolio Allocation Diversification
- Authors: Jun Lu, Shao Yi
- Abstract summary: We introduce an autoencoding CGAN (ACGAN) based on deep generative models that learns the internal trend of historical data.
We evaluate the model on several real-world datasets from both the US and Europe markets.
- Score: 4.913248451323163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the decades, the Markowitz framework has been used extensively in
portfolio analysis though it puts too much emphasis on the analysis of the
market uncertainty rather than on the trend prediction. While generative
adversarial network (GAN) and conditional GAN (CGAN) have been explored to
generate financial time series and extract features that can help portfolio
analysis. The limitation of the CGAN framework stands in putting too much
emphasis on generating series rather than keeping features that can help this
generator. In this paper, we introduce an autoencoding CGAN (ACGAN) based on
deep generative models that learns the internal trend of historical data while
modeling market uncertainty and future trends. We evaluate the model on several
real-world datasets from both the US and Europe markets, and show that the
proposed ACGAN model leads to better portfolio allocation and generates series
that are closer to true data compared to the existing Markowitz and CGAN
approaches.
Related papers
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks [4.2056926734482065]
This is the first study to incorporate risky firms and use all the firms in portfolio optimisation.
We propose and empirically test a novel method that leverages Graph Attention networks (GATs)
GATs are deep learning-based models that exploit network data to uncover nonlinear relationships.
arXiv Detail & Related papers (2024-07-22T10:50:47Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Numerical Claim Detection in Finance: A New Financial Dataset, Weak-Supervision Model, and Market Analysis [4.575870619860645]
We construct a new financial dataset for the claim detection task in the financial domain.
We propose a novel weak-supervision model that incorporates the knowledge of subject matter experts (SMEs) in the aggregation function.
Here, we observe the dependence of earnings surprise and return on our optimism measure.
arXiv Detail & Related papers (2024-02-18T22:55:26Z) - Deep Generative Modeling for Financial Time Series with Application in
VaR: A Comparative Review [22.52651841623703]
Historical simulation (HS) uses the empirical distribution of daily returns in a historical window as the forecast distribution of risk factor returns in the next day.
HS, GARCH and CWGAN models are tested on both historical USD yield curve data and additional data simulated from GARCH and CIR processes.
The study shows that top performing models are HS, GARCH and CWGAN models.
arXiv Detail & Related papers (2024-01-18T20:35:32Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - A Hybrid Approach on Conditional GAN for Portfolio Analysis [4.913248451323163]
We introduce a hybrid approach on conditional GAN based on deep generative models that learns the internal trend of historical data while modeling market uncertainty and future trends.
We show that the proposed HybridCGAN and HybridACGAN models lead to better portfolio allocation compared to the existing Markowitz, CGAN, and ACGAN approaches.
arXiv Detail & Related papers (2022-07-13T00:58:42Z) - Generating Realistic Stock Market Order Streams [18.86755130031027]
We propose an approach to generate realistic and high-fidelity stock market data based on generative adversarial networks (GANs)
Our Stock-GAN model employs a conditional Wasserstein GAN to capture history dependence of orders.
arXiv Detail & Related papers (2020-06-07T17:32:42Z) - Benchmarking Graph Neural Networks [75.42159546060509]
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs.
For any successful field to become mainstream and reliable, benchmarks must be developed to quantify progress.
GitHub repository has reached 1,800 stars and 339 forks, which demonstrates the utility of the proposed open-source framework.
arXiv Detail & Related papers (2020-03-02T15:58:46Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.