論文の概要: Towards Highly Expressive Machine Learning Models of Non-Melanoma Skin
Cancer
- arxiv url: http://arxiv.org/abs/2207.05749v1
- Date: Sat, 9 Jul 2022 04:53:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 08:49:15.089687
- Title: Towards Highly Expressive Machine Learning Models of Non-Melanoma Skin
Cancer
- Title(参考訳): 非メラノーマ皮膚癌の高表現率機械学習モデルに向けて
- Authors: Simon M. Thomas, James G. Lefevre, Glenn Baxter, Nicholas A.Hamilton
- Abstract要約: 非メラノーマ皮膚癌の問題領域に離散的モデリング技術を適用する実験を行った。
我々は、病理学用語を用いて自然言語記述を生成するシーケンス・ツー・シーケンス・トランスフォーマーを訓練した。
その結果は、高度に表現力のある機械学習システムに向けた、有望な手段となる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Pathologists have a rich vocabulary with which they can describe all the
nuances of cellular morphology. In their world, there is a natural pairing of
images and words. Recent advances demonstrate that machine learning models can
now be trained to learn high-quality image features and represent them as
discrete units of information. This enables natural language, which is also
discrete, to be jointly modelled alongside the imaging, resulting in a
description of the contents of the imaging. Here we present experiments in
applying discrete modelling techniques to the problem domain of non-melanoma
skin cancer, specifically, histological images of Intraepidermal Carcinoma
(IEC). Implementing a VQ-GAN model to reconstruct high-resolution (256x256)
images of IEC images, we trained a sequence-to-sequence transformer to generate
natural language descriptions using pathologist terminology. Combined with the
idea of interactive concept vectors available by using continuous generative
methods, we demonstrate an additional angle of interpretability. The result is
a promising means of working towards highly expressive machine learning systems
which are not only useful as predictive/classification tools, but also means to
further our scientific understanding of disease.
- Abstract(参考訳): 病理学者は細胞形態の全てのニュアンスを記述できる豊富な語彙を持っている。
彼らの世界では、自然な画像と言葉のペアがあります。
最近の進歩は、機械学習モデルが高品質な画像特徴を学習し、それらを情報の離散単位として表現するために訓練できることを示しています。
これにより、離散的な自然言語を画像と共に共同でモデル化することができ、その結果、画像の内容が記述される。
今回我々は,非メラノーマ皮膚癌の問題領域,特に表皮内癌(IEC)の組織像に離散的モデリング手法を適用する実験を行った。
iec画像の高分解能(256x256)画像を再構成するvq-ganモデルを実装し,病理学用語を用いた自然言語記述を生成するためにシーケンスツーシーケンストランスフォーマを訓練した。
連続生成法を用いて利用可能なインタラクティブな概念ベクトルのアイデアと組み合わせて、解釈可能性のさらなる角度を示す。
この結果は、予測/分類ツールとしてだけでなく、病気の科学的理解をさらに深めるための、高度に表現力のある機械学習システムに向けた有望な手段である。
関連論文リスト
- Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
本稿では, 自己回帰シーケンス事前学習フレームワークを用いて, 3次元医用画像表現を学習するための先駆的手法を提案する。
我々は,空間的,コントラスト的,意味的相関に基づく様々な3次元医用画像にアプローチし,トークンシーケンス内の相互接続された視覚トークンとして扱う。
論文 参考訳(メタデータ) (2024-09-13T10:19:10Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
病理組織像のための新しい言語型自己教師学習フレームワーク,階層型言語型自己監督(HLSS)を提案する。
その結果,OpenSRH と TCGA の2つの医用画像ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-03-21T17:58:56Z) - In-context learning enables multimodal large language models to classify
cancer pathology images [0.7085801706650957]
言語処理では、コンテキスト内学習(in-context learning)は、モデルがプロンプト内で学習し、パラメータ更新の必要性を回避できる代替手段を提供する。
そこで本研究では,GPT-4V(Generative Pretrained Transformer 4 with Vision (GPT-4V)) を用いたがん画像処理モデルの評価を行った。
この結果から,テキスト内学習は特定のタスクで訓練された特殊なニューラルネットワークに適合したり,あるいは性能を向上するのに十分であり,最小限のサンプルしか必要としないことがわかった。
論文 参考訳(メタデータ) (2024-03-12T08:34:34Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - BiomedJourney: Counterfactual Biomedical Image Generation by
Instruction-Learning from Multimodal Patient Journeys [99.7082441544384]
本稿では,インストラクション学習によるバイオメディカル画像生成のための新しい手法であるBiomedJourneyを紹介する。
我々は、GPT-4を用いて、対応する画像レポートを処理し、疾患進行の自然言語記述を生成する。
得られた三重項は、反現実的なバイオメディカル画像生成のための潜伏拡散モデルを訓練するために使用される。
論文 参考訳(メタデータ) (2023-10-16T18:59:31Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
複数のインスタンス学習モデルを説明するための4つの属性法について検討する。
急性骨髄性白血病の2つのデータセットと100万以上の単細胞画像について検討した。
我々は、属性マップと医療専門家の注釈を比較し、モデルの意思決定が人間の基準とどのように異なるかを確認する。
論文 参考訳(メタデータ) (2023-03-15T14:00:11Z) - DEPAS: De-novo Pathology Semantic Masks using a Generative Model [0.0]
DEPASと呼ばれるスケーラブルな生成モデルを導入し、組織構造をキャプチャし、最先端の品質の高精細なセマンティックマスクを生成する。
我々は,DEPASが皮膚,前立腺,肺の3種類の臓器に対して,組織の現実的な意味マップを生成する能力を示した。
論文 参考訳(メタデータ) (2023-02-13T16:48:33Z) - RoentGen: Vision-Language Foundation Model for Chest X-ray Generation [7.618389245539657]
我々は,胸部X線のコーパスに事前学習した潜伏拡散モデルを適用することで,大きな自然医学的分布変化を克服する戦略を開発する。
テキストプロンプトに条件付された高忠実で多様な合成CXRを生成するモデルの能力について検討する。
得られたモデル(RoentGen)が視覚的に説得力があり多様な合成CXR画像を生成することができることを示す。
論文 参考訳(メタデータ) (2022-11-23T06:58:09Z) - Deep Learning Generates Synthetic Cancer Histology for Explainability
and Education [37.13457398561086]
条件付き生成逆数ネットワーク(英: Conditional Generative Adversarial Network、cGAN)は、合成画像を生成するAIモデルである。
本稿では,cGANを用いた分子サブタイプ腫瘍の分類訓練モデルについて述べる。
腫瘍の病理組織学的所見に対するヒトの理解を増強し, 向上させることが, 明確で直感的なcGANの可視化に有効であることを示す。
論文 参考訳(メタデータ) (2022-11-12T00:14:57Z) - Deepfake histological images for enhancing digital pathology [0.40631409309544836]
我々は,クラスラベルに制約された病理像を合成する生成逆ネットワークモデルを開発した。
前立腺および大腸組織像の合成におけるこの枠組みの有用性について検討した。
大腸生検によるより複雑な画像へのアプローチを拡張し,そのような組織における複雑な微小環境も再現可能であることを示す。
論文 参考訳(メタデータ) (2022-06-16T17:11:08Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
光音響イメージングは医療に革命をもたらす可能性がある。
この技術の臨床的翻訳には、高次元取得したデータを臨床的に関連性があり解釈可能な情報に変換する必要がある。
本稿では,多スペクトル光音響画像のセマンティックセグメンテーションに対する深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-20T09:33:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。