論文の概要: Deepfake histological images for enhancing digital pathology
- arxiv url: http://arxiv.org/abs/2206.08308v1
- Date: Thu, 16 Jun 2022 17:11:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-17 19:03:31.573875
- Title: Deepfake histological images for enhancing digital pathology
- Title(参考訳): デジタル病理の深部組織像
- Authors: Kianoush Falahkheirkhah, Saumya Tiwari, Kevin Yeh, Sounak Gupta, Loren
Herrera-Hernandez, Michael R. McCarthy, Rafael E. Jimenez, John C. Cheville,
Rohit Bhargava
- Abstract要約: 我々は,クラスラベルに制約された病理像を合成する生成逆ネットワークモデルを開発した。
前立腺および大腸組織像の合成におけるこの枠組みの有用性について検討した。
大腸生検によるより複雑な画像へのアプローチを拡張し,そのような組織における複雑な微小環境も再現可能であることを示す。
- 参考スコア(独自算出の注目度): 0.40631409309544836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An optical microscopic examination of thinly cut stained tissue on glass
slides prepared from a FFPE tissue blocks is the gold standard for tissue
diagnostics. In addition, the diagnostic abilities and expertise of any
pathologist is dependent on their direct experience with common as well as
rarer variant morphologies. Recently, deep learning approaches have been used
to successfully show a high level of accuracy for such tasks. However,
obtaining expert-level annotated images is an expensive and time-consuming task
and artificially synthesized histological images can prove greatly beneficial.
Here, we present an approach to not only generate histological images that
reproduce the diagnostic morphologic features of common disease but also
provide a user ability to generate new and rare morphologies. Our approach
involves developing a generative adversarial network model that synthesizes
pathology images constrained by class labels. We investigated the ability of
this framework in synthesizing realistic prostate and colon tissue images and
assessed the utility of these images in augmenting diagnostic ability of
machine learning methods as well as their usability by a panel of experienced
anatomic pathologists. Synthetic data generated by our framework performed
similar to real data in training a deep learning model for diagnosis.
Pathologists were not able to distinguish between real and synthetic images and
showed a similar level of inter-observer agreement for prostate cancer grading.
We extended the approach to significantly more complex images from colon
biopsies and showed that the complex microenvironment in such tissues can also
be reproduced. Finally, we present the ability for a user to generate deepfake
histological images via a simple markup of sematic labels.
- Abstract(参考訳): ffpe組織ブロックから作製したガラススライド上の薄い切片染色組織の光学顕微鏡による観察は、組織診断の金本位制である。
加えて、病理学者の診断能力と専門知識は、その一般的な経験と稀な変異形態学に依拠している。
近年,このようなタスクに対して高い精度を示すために,ディープラーニング手法が採用されている。
しかし, 専門家レベルの注釈画像を得ることは費用がかかり, 時間を要する作業であり, 人工的に合成した組織像は有益である。
本稿では, 共通疾患の診断形態学的特徴を再現する組織学的画像を生成するだけでなく, 新規かつ稀な形態形成をユーザに提供する方法を提案する。
本手法では,クラスラベルに制約された病理像を合成する生成的対向ネットワークモデルを開発する。
前立腺および大腸組織像のリアルな合成能力について検討し、これらの画像の有用性を機械学習手法の診断能力の向上と、経験豊富な解剖病理医のパネルによる有用性の評価を行った。
診断のための深層学習モデルの訓練において,本フレームワークが生成した合成データを実データと類似して実行した。
病理学者は、実際の画像と合成画像の区別ができず、前立腺がんの格付けに関して、同様のレベルのオブザーバー間合意を示した。
大腸生検からより複雑な画像へとアプローチを拡張し,このような組織における複雑な微小環境を再現できることを示した。
最後に,ユーザがセマティックラベルの単純なマークアップを用いて,深部組織像を作成できることを示す。
関連論文リスト
- HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine [0.0]
HistoSPACEモデルは、STデータで利用可能な組織像の多様性を調べ、組織像から分子的洞察を抽出する。
モデルは、現代のアルゴリズムと比較して大きな効率性を示し、残余のクロスバリデーションにおいて0.56の相関関係を示す。
論文 参考訳(メタデータ) (2024-08-07T07:12:52Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - DEPAS: De-novo Pathology Semantic Masks using a Generative Model [0.0]
DEPASと呼ばれるスケーラブルな生成モデルを導入し、組織構造をキャプチャし、最先端の品質の高精細なセマンティックマスクを生成する。
我々は,DEPASが皮膚,前立腺,肺の3種類の臓器に対して,組織の現実的な意味マップを生成する能力を示した。
論文 参考訳(メタデータ) (2023-02-13T16:48:33Z) - A Morphology Focused Diffusion Probabilistic Model for Synthesis of
Histopathology Images [0.5541644538483947]
深層学習法は組織像の解析と分類に大きな進歩をもたらした。
これらの合成画像は、教育、熟練度テスト、プライバシ、データ共有など、病理学にいくつかの応用がある。
論文 参考訳(メタデータ) (2022-09-27T05:58:35Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
我々は、様々な弱い教師付きおよびパッチレベルのタスクに対する検証を行い、様々な自己教師付きモデルを訓練することにより、病理学における良い表現を探索する。
我々の重要な発見は、DINOベースの知識蒸留を用いたビジョントランスフォーマーが、組織像におけるデータ効率と解釈可能な特徴を学習できることを発見したことである。
論文 参考訳(メタデータ) (2022-03-01T16:14:41Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Self-Supervised Representation Learning using Visual Field Expansion on
Digital Pathology [7.568373895297608]
このような画像を分析する上で重要な課題は、そのサイズであり、そのサイズはギガピクセルに収まる。
本稿では,このようなタイルの強力な表現を学習し,視界を確実に拡張する新しい生成フレームワークを提案する。
我々のモデルは、異なる臨床エンドポイントに使用できる強力な表現を同時に学習しながら、細部で異なる組織タイプを生成することを学習する。
論文 参考訳(メタデータ) (2021-09-07T19:20:01Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
光音響イメージングは医療に革命をもたらす可能性がある。
この技術の臨床的翻訳には、高次元取得したデータを臨床的に関連性があり解釈可能な情報に変換する必要がある。
本稿では,多スペクトル光音響画像のセマンティックセグメンテーションに対する深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-20T09:33:55Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。