論文の概要: On the Robustness of Bayesian Neural Networks to Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2207.06154v2
- Date: Mon, 10 Jul 2023 07:29:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 19:23:29.763527
- Title: On the Robustness of Bayesian Neural Networks to Adversarial Attacks
- Title(参考訳): 対向攻撃に対するベイズニューラルネットワークのロバスト性について
- Authors: Luca Bortolussi, Ginevra Carbone, Luca Laurenti, Andrea Patane, Guido
Sanguinetti, Matthew Wicker
- Abstract要約: 敵対的攻撃に対する脆弱性は、安全クリティカルなアプリケーションでディープラーニングを採用する上で、大きなハードルのひとつです。
データ分布の縮退の結果、勾配に基づく攻撃に対する脆弱性が生じることを示す。
BNN後部分布に対する損失の予測勾配は、後部からサンプリングされた各ニューラルネットワークが勾配に基づく攻撃に対して脆弱である場合でも消滅していることを示す。
- 参考スコア(独自算出の注目度): 9.966113038850946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vulnerability to adversarial attacks is one of the principal hurdles to the
adoption of deep learning in safety-critical applications. Despite significant
efforts, both practical and theoretical, training deep learning models robust
to adversarial attacks is still an open problem. In this paper, we analyse the
geometry of adversarial attacks in the large-data, overparameterized limit for
Bayesian Neural Networks (BNNs). We show that, in the limit, vulnerability to
gradient-based attacks arises as a result of degeneracy in the data
distribution, i.e., when the data lies on a lower-dimensional submanifold of
the ambient space. As a direct consequence, we demonstrate that in this limit
BNN posteriors are robust to gradient-based adversarial attacks. Crucially, we
prove that the expected gradient of the loss with respect to the BNN posterior
distribution is vanishing, even when each neural network sampled from the
posterior is vulnerable to gradient-based attacks. Experimental results on the
MNIST, Fashion MNIST, and half moons datasets, representing the finite data
regime, with BNNs trained with Hamiltonian Monte Carlo and Variational
Inference, support this line of arguments, showing that BNNs can display both
high accuracy on clean data and robustness to both gradient-based and
gradient-free based adversarial attacks.
- Abstract(参考訳): 敵攻撃に対する脆弱性は、安全クリティカルなアプリケーションでディープラーニングを採用する上で、大きなハードルのひとつです。
実践的かつ理論的な大きな努力にもかかわらず、敵対的攻撃に頑健なディープラーニングモデルをトレーニングすることは、いまだに未解決の問題である。
本稿では,ベイズニューラルネットワーク(BNN)の大規模・過パラメータ化限界における敵攻撃の幾何学的構造を解析する。
この限界において、データ分布の縮退(つまり、データが周囲空間の低次元部分多様体上にある場合)の結果、勾配に基づく攻撃に対する脆弱性が生じることを示す。
直接的な結果として,この制限下では,BNN後部は勾配に基づく攻撃に対して堅牢であることを示す。
また,bnn後方分布に対する損失の予測勾配は,後方からサンプリングされたニューラルネットワークが勾配に基づく攻撃に対して脆弱である場合においても消失することを示した。
MNIST、Fashion MNIST、および半衛星データセットに関する実験結果は、ハミルトン・モンテカルロと変分推論で訓練されたBNNによって、この一連の議論をサポートし、BNNは、勾配に基づく攻撃と勾配のない攻撃の両方に対して高い精度と堅牢性の両方を表示できることを示した。
関連論文リスト
- Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks [50.87615167799367]
グラフニューラルネットワーク(GNN)は、特定のグラフのノード特徴をターゲットとして、バックドアを含む有毒な攻撃に対して認証する。
コンボリューションベースのGNNとPageRankベースのGNNの最悪の動作におけるグラフ構造の役割とその接続性に関する基本的な知見を提供する。
論文 参考訳(メタデータ) (2024-07-15T16:12:51Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Not So Robust After All: Evaluating the Robustness of Deep Neural
Networks to Unseen Adversarial Attacks [5.024667090792856]
ディープニューラルネットワーク(DNN)は、分類、認識、予測など、さまざまなアプリケーションで注目を集めている。
従来のDNNの基本的属性は、入力データの修正に対する脆弱性である。
本研究の目的は、敵攻撃に対する現代の防御機構の有効性と一般化に挑戦することである。
論文 参考訳(メタデータ) (2023-08-12T05:21:34Z) - What Does the Gradient Tell When Attacking the Graph Structure [44.44204591087092]
本稿では,GNNのメッセージパッシング機構により,攻撃者がクラス間エッジを増大させる傾向があることを示す。
異なるノードを接続することで、攻撃者はより効果的にノード機能を破損させ、そのような攻撃をより有利にする。
本研究では,攻撃効率と非受容性のバランスを保ち,より優れた非受容性を実現するために攻撃効率を犠牲にする,革新的な攻撃損失を提案する。
論文 参考訳(メタデータ) (2022-08-26T15:45:20Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
インスタンスターゲット中毒攻撃におけるPAC学習性と認証について検討する。
敵の予算がサンプルの複雑さに比例してスケールすると、PACの学習性と認定が達成可能であることを示す。
実データセット上でのK近傍, ロジスティック回帰, 多層パーセプトロン, 畳み込みニューラルネットワークの堅牢性を実証的に検討する。
論文 参考訳(メタデータ) (2021-05-18T17:48:15Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN)モデルにはセキュリティに関する脆弱性がある。
データ中毒による摂動攻撃は、モデルに偽データを注入する複雑な敵対攻撃である。
そこで本研究では,攻撃に依存しない防御手法を提案する。
論文 参考訳(メタデータ) (2020-12-08T21:25:44Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Towards More Practical Adversarial Attacks on Graph Neural Networks [14.78539966828287]
グラフニューラルネットワーク(GNN)に対するブラックボックス攻撃を,新規で現実的な制約の下で検討する。
我々は,GNNモデルの構造的帰納バイアスが,この種の攻撃に有効であることを示す。
論文 参考訳(メタデータ) (2020-06-09T05:27:39Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
敵攻撃は入力に対する小さな摂動によって容易に騙される。
グラフニューラルネットワーク(GNN)がこの脆弱性を継承することを実証している。
本調査では,既存の攻撃と防御を分類し,対応する最先端の手法を概観する。
論文 参考訳(メタデータ) (2020-03-02T04:32:38Z) - Robustness of Bayesian Neural Networks to Gradient-Based Attacks [9.966113038850946]
敵対的攻撃に対する脆弱性は、安全クリティカルなアプリケーションでディープラーニングを採用する上で、大きなハードルのひとつです。
データ分布の縮退の結果、勾配に基づく攻撃に対する脆弱性が生じることを示す。
以上の結果から,BNN後頭葉は勾配に基づく対向攻撃に対して頑健であることが示唆された。
論文 参考訳(メタデータ) (2020-02-11T13:03:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。