論文の概要: Towards Knowledge-based Mining of Mental Disorder Patterns from Textual
Data
- arxiv url: http://arxiv.org/abs/2207.06254v1
- Date: Thu, 7 Jul 2022 10:04:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-17 17:54:04.698723
- Title: Towards Knowledge-based Mining of Mental Disorder Patterns from Textual
Data
- Title(参考訳): 知識に基づくテキストデータからの精神障害パターンのマイニングに向けて
- Authors: Maryam Shahabikargar
- Abstract要約: メンタルヘルス障害は、すべての国の経済と健康に深刻な影響をもたらす可能性がある。
精神疾患の早期徴候の特定は不可欠である。
例えば、うつ病は個人の自殺リスクを高める可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mental health disorders may cause severe consequences on all the countries'
economies and health. For example, the impacts of the COVID-19 pandemic, such
as isolation and travel ban, can make us feel depressed. Identifying early
signs of mental health disorders is vital. For example, depression may increase
an individual's risk of suicide. The state-of-the-art research in identifying
mental disorder patterns from textual data, uses hand-labelled training sets,
especially when a domain expert's knowledge is required to analyse various
symptoms. This task could be time-consuming and expensive. To address this
challenge, in this paper, we study and analyse the various clinical and
non-clinical approaches to identifying mental health disorders. We leverage the
domain knowledge and expertise in cognitive science to build a domain-specific
Knowledge Base (KB) for the mental health disorder concepts and patterns. We
present a weaker form of supervision by facilitating the generating of training
data from a domain-specific Knowledge Base (KB). We adopt a typical scenario
for analysing social media to identify major depressive disorder symptoms from
the textual content generated by social users. We use this scenario to evaluate
how our knowledge-based approach significantly improves the quality of results.
- Abstract(参考訳): 精神疾患はすべての国の経済や健康に深刻な影響を及ぼす可能性がある。
例えば、隔離や旅行禁止といった新型コロナウイルス(covid-19)のパンデミックの影響は、私たちは落ち込んでいます。
精神疾患の早期徴候の特定は不可欠である。
例えば、うつ病は個人の自殺リスクを高める可能性がある。
テキストデータから精神障害パターンを識別する最先端の研究では、特にドメインの専門家の知識がさまざまな症状を分析する必要がある場合に、手ラベルのトレーニングセットを使用する。
この作業には時間と費用がかかります。
この課題に対処するため,精神疾患の特定に向けた臨床・非臨床的アプローチの検討と分析を行った。
我々は、認知科学におけるドメイン知識と専門知識を活用し、精神疾患の概念とパターンのためのドメイン固有の知識ベース(KB)を構築します。
我々は、ドメイン特化知識ベース(kb)からのトレーニングデータの生成を容易にすることにより、より弱い監督形態を提案する。
我々は、ソーシャルメディアの分析に典型的なシナリオを採用し、ソーシャルユーザによるテキストコンテンツからうつ病の症状を識別する。
このシナリオを使用して、知識に基づくアプローチが結果の質を大幅に向上させるかを評価する。
関連論文リスト
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
メンタルヘルス障害は世界で最も深刻な病気の1つである。
プライバシーに関する懸念は、パーソナライズされた治療データのアクセシビリティを制限する。
MentalArenaは、言語モデルをトレーニングするためのセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T13:06:40Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
本研究では,認知的歪み検出の課題について検討し,思考の早期発見(DoT)を提案する。
DoTは、事実と思考を分離するための主観的評価、思考と矛盾する推論プロセスを引き出すための対照的な推論、認知スキーマを要約するスキーマ分析という3つの段階を通して、患者のスピーチの診断を行う。
実験により、DoTは認知的歪み検出のためのChatGPTよりも大幅に改善され、一方で人間の専門家が承認した高品質な合理性を生成することが示された。
論文 参考訳(メタデータ) (2023-10-11T02:47:21Z) - An Annotated Dataset for Explainable Interpersonal Risk Factors of
Mental Disturbance in Social Media Posts [0.0]
ソーシャルメディア上での精神障害に影響を及ぼす人為的リスクファクター(IRF)の分類と説明を伴う注釈付きデータセットの構築とリリースを行う。
我々は,TBeとPBuのパターンをユーザの歴史的ソーシャルメディアプロファイルの感情スペクトルで検出することにより,将来的な研究方向のベースラインモデルを構築し,リアルタイムなパーソナライズされたAIモデルを開発する。
論文 参考訳(メタデータ) (2023-05-30T04:08:40Z) - UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensemble of BERTs for
Classifying Common Mental Illnesses on Social Media Posts [0.0]
UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensembling of BERTs for produce reliable and well-calibrated predictions。
Reddit上の非構造化ユーザデータを分析して、None、Depression、Anxiety、Bipolar disorder、ADHD、PTSDの6種類の精神疾患の分類を行う。
論文 参考訳(メタデータ) (2023-04-10T12:18:53Z) - Depression Detection Using Digital Traces on Social Media: A
Knowledge-aware Deep Learning Approach [17.07576768682415]
うつ病は世界中でよく見られる病気だ。診断は困難であり、診断が下にある。
うつ病患者は、常に症状、主要なライフイベント、治療をソーシャルメディアで共有しているため、研究者はうつ病検出のためにソーシャルメディア上でユーザー生成のデジタルトレースに目を向けている。
本稿では,抑うつリスクのあるソーシャルメディア利用者を正確に検出し,その検出に寄与する重要な要因を説明するために,Deep Knowledge-Aware Depression Detection (DKDD)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T20:08:07Z) - Predicting mental health using social media: A roadmap for future
development [0.0]
うつ病や自殺などの精神障害は、世界中で3億人以上の人々に影響を及ぼす。
ソーシャルメディア上では、精神障害の症状が観察され、自動化されたアプローチがそれらを検出する能力が高まっている。
この研究は、精神状態検出を機械学習技術に基づいて行うことができる分析のロードマップを提供する。
論文 参考訳(メタデータ) (2023-01-25T08:08:29Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
うつ病は、深刻な結果を避けるために、早期に検出され治療されなければならない一般的な精神疾患である。
我々は、ソーシャルメディアの投稿から、うつ病のレベルが落ち込んでいないこと、中程度に落ち込んでいないこと、および深刻な落ち込んでいないことを検知する、金の標準データセットを開発した。
論文 参考訳(メタデータ) (2022-02-07T10:24:33Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。