論文の概要: A Transfer Learning Based Model for Text Readability Assessment in
German
- arxiv url: http://arxiv.org/abs/2207.06265v1
- Date: Wed, 13 Jul 2022 15:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-14 14:17:31.974339
- Title: A Transfer Learning Based Model for Text Readability Assessment in
German
- Title(参考訳): 移動学習に基づくドイツ語のテキスト可読性評価モデル
- Authors: Salar Mohtaj, Babak Naderi, Sebastian M\"oller, Faraz Maschhur,
Chuyang Wu, Max Reinhard
- Abstract要約: 移動学習に基づくドイツ語テキストのテキスト複雑性評価のための新しいモデルを提案する。
最高のモデルはBERTの事前訓練言語モデルに基づいており、Root Mean Square Error (RMSE) は 0.483 である。
- 参考スコア(独自算出の注目度): 4.550811027560416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text readability assessment has a wide range of applications for different
target people, from language learners to people with disabilities. The fast
pace of textual content production on the web makes it impossible to measure
text complexity without the benefit of machine learning and natural language
processing techniques. Although various research addressed the readability
assessment of English text in recent years, there is still room for improvement
of the models for other languages. In this paper, we proposed a new model for
text complexity assessment for German text based on transfer learning. Our
results show that the model outperforms more classical solutions based on
linguistic features extraction from input text. The best model is based on the
BERT pre-trained language model achieved the Root Mean Square Error (RMSE) of
0.483.
- Abstract(参考訳): テキスト可読性の評価は、言語学習者から障害者まで、さまざまな対象者に対して幅広い応用がある。
ウェブ上でのテキストコンテンツ制作の速いペースは、機械学習や自然言語処理技術の恩恵を受けずに、テキストの複雑さを測ることは不可能である。
近年の英語テキストの可読性評価には様々な研究がなされているが、他の言語に対するモデルの改善の余地は残っている。
本稿では,トランスファー学習に基づくドイツ語テキストのテキスト複雑性評価の新しいモデルを提案する。
その結果,入力テキストから抽出した言語的特徴に基づく古典的解よりも,モデルの方が優れていることがわかった。
最高のモデルはBERTの事前訓練言語モデルに基づいており、Root Mean Square Error (RMSE) は 0.483 である。
関連論文リスト
- Who Writes the Review, Human or AI? [0.36498648388765503]
本研究では,AIによる書評と人間による書評を正確に区別する手法を提案する。
提案手法は移動学習を利用して,異なるトピック間で生成したテキストを識別する。
実験の結果、元のテキストのソースを検出でき、精度96.86%に達することが示されている。
論文 参考訳(メタデータ) (2024-05-30T17:38:44Z) - Retrieval is Accurate Generation [99.24267226311157]
本稿では,支援文書の集合からコンテキスト認識句を選択する新しい手法を提案する。
本モデルでは,検索対象のベースラインの中で,最高の性能と低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-02-27T14:16:19Z) - A Unified Neural Network Model for Readability Assessment with Feature
Projection and Length-Balanced Loss [17.213602354715956]
本稿では,可読性評価のための特徴投影と長さバランス損失を考慮したBERTモデルを提案する。
本モデルは,2つの英語ベンチマークデータセットと1つの中国語教科書データセットを用いて,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-19T05:33:27Z) - Training Language Models with Natural Language Feedback [51.36137482891037]
3段階学習アルゴリズムを用いてモデル出力の言語フィードバックから学習する。
合成実験において、まず言語モデルがフィードバックを正確に組み込んで改良を行うかどうかを評価する。
人間の手書きフィードバックのサンプルは100程度しかなく, 学習アルゴリズムはGPT-3モデルを微調整し, ほぼ人間レベルの要約を行う。
論文 参考訳(メタデータ) (2022-04-29T15:06:58Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
本研究は,統計的,ニューラルベース,トランスフォーマーベースの機械学習手法に基づく形式性検出手法の体系的研究を初めて行う。
単言語,多言語,言語横断の3種類の実験を行った。
本研究は,モノリンガルおよび多言語形式分類タスクのためのトランスフォーマーベースモデルに対するChar BiLSTMモデルの克服を示す。
論文 参考訳(メタデータ) (2022-04-19T16:23:07Z) - An Application of Pseudo-Log-Likelihoods to Natural Language Scoring [5.382454613390483]
比較的少ないパラメータとトレーニングステップを持つ言語モデルは、最近の大規模なデータセットでそれを上回るパフォーマンスを得ることができる。
二項選択タスクにおける常識推論のための絶対的最先端結果を生成する。
より小さなモデルの堅牢性は、構成性の観点から理解されるべきである。
論文 参考訳(メタデータ) (2022-01-23T22:00:54Z) - Language Model Evaluation in Open-ended Text Generation [0.76146285961466]
本研究では,機械生成テキストの品質,多様性,一貫性を評価するために提案されている評価指標について検討する。
そこで我々は,オープン・エンド・ジェネレーション・タスクにおいて,言語モデルを評価するための実用的なパイプラインを提案する。
論文 参考訳(メタデータ) (2021-08-08T06:16:02Z) - Improving Cross-Lingual Reading Comprehension with Self-Training [62.73937175625953]
現在の最新モデルは、いくつかのベンチマークで人間のパフォーマンスを上回っています。
前作では、ゼロショットのクロスリンガル読解のための事前訓練された多言語モデルの能力を明らかにしている。
本稿では,ラベルのないデータを利用して性能を向上する。
論文 参考訳(メタデータ) (2021-05-08T08:04:30Z) - TextFlint: Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing [73.16475763422446]
NLPタスク(TextFlint)のための多言語ロバスト性評価プラットフォームを提案する。
普遍的なテキスト変換、タスク固有の変換、敵攻撃、サブポピュレーション、およびそれらの組み合わせを取り入れ、包括的な堅牢性分析を提供する。
TextFlintは、モデルの堅牢性の欠点に対処するために、完全な分析レポートとターゲットとした拡張データを生成します。
論文 参考訳(メタデータ) (2021-03-21T17:20:38Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。