論文の概要: Resource-Aware Arabic LLM Creation: Model Adaptation, Integration, and Multi-Domain Testing
- arxiv url: http://arxiv.org/abs/2412.17548v1
- Date: Mon, 23 Dec 2024 13:08:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:55.656939
- Title: Resource-Aware Arabic LLM Creation: Model Adaptation, Integration, and Multi-Domain Testing
- Title(参考訳): リソースを意識したアラビアLLM作成:モデル適応、統合、マルチドメインテスト
- Authors: Prakash Aryan,
- Abstract要約: 本稿では,4GB VRAMしか持たないシステム上で,量子化低ランク適応(QLoRA)を用いたアラビア語処理のためのQwen2-1.5Bモデルを微調整する新しい手法を提案する。
Bactrian、OpenAssistant、Wikipedia Arabic corporaなどの多様なデータセットを使用して、この大きな言語モデルをアラビア語領域に適応する過程を詳述する。
1万以上のトレーニングステップの実験結果は、最終的な損失が0.1083に収束するなど、大幅なパフォーマンス向上を示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a novel approach to fine-tuning the Qwen2-1.5B model for Arabic language processing using Quantized Low-Rank Adaptation (QLoRA) on a system with only 4GB VRAM. We detail the process of adapting this large language model to the Arabic domain, using diverse datasets including Bactrian, OpenAssistant, and Wikipedia Arabic corpora. Our methodology involves custom data preprocessing, model configuration, and training optimization techniques such as gradient accumulation and mixed-precision training. We address specific challenges in Arabic NLP, including morphological complexity, dialectal variations, and diacritical mark handling. Experimental results over 10,000 training steps show significant performance improvements, with the final loss converging to 0.1083. We provide comprehensive analysis of GPU memory usage, training dynamics, and model evaluation across various Arabic language tasks, including text classification, question answering, and dialect identification. The fine-tuned model demonstrates robustness to input perturbations and improved handling of Arabic-specific linguistic phenomena. This research contributes to multilingual AI by demonstrating a resource-efficient approach for creating specialized language models, potentially democratizing access to advanced NLP technologies for diverse linguistic communities. Our work paves the way for future research in low-resource language adaptation and efficient fine-tuning of large language models.
- Abstract(参考訳): 本稿では,4GB VRAMしか持たないシステム上で,量子化低ランク適応(QLoRA)を用いたアラビア語処理のためのQwen2-1.5Bモデルを微調整する新しい手法を提案する。
Bactrian、OpenAssistant、Wikipedia Arabic corporaなどの多様なデータセットを使用して、この大きな言語モデルをアラビア語領域に適応する過程を詳述する。
我々の手法は、カスタムデータ前処理、モデル構成、勾配蓄積や混合精度トレーニングのようなトレーニング最適化技術を含む。
アラビアNLPでは、形態的複雑性、方言のバリエーション、ダイアクリティカルマークハンドリングなど、特定の課題に対処する。
1万以上のトレーニングステップの実験結果は、最終的な損失が0.1083に収束するなど、大幅なパフォーマンス向上を示している。
我々は、テキスト分類、質問応答、方言識別など、さまざまなアラビア語タスクにおけるGPUメモリ使用状況、トレーニングダイナミクス、モデル評価の包括的な分析を行う。
微調整モデルは入力摂動に対する堅牢性を示し、アラビア固有の言語現象の扱いを改善した。
本研究は,多言語コミュニティを対象とした高度なNLP技術へのアクセスを民主化するために,特殊な言語モデルを作成するための資源効率の高いアプローチを示すことによって,多言語AIに寄与する。
我々の研究は、低リソース言語適応と大規模言語モデルの効率的な微調整における将来の研究の道を開くものである。
関連論文リスト
- GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning [0.0]
InstAr-500kは、コンテンツの生成と収集によって生成された新しいアラビア文字の命令データセットである。
我々は,オープンソースのGemma-7Bモデルを下流タスクで微調整し,その機能を改善することにより,このデータセットを評価する。
複数の評価結果に基づき, アラビアNLPベンチマークにおいて, 微調整モデルにより優れた性能が得られた。
論文 参考訳(メタデータ) (2024-07-02T10:43:49Z) - Low-resource neural machine translation with morphological modeling [3.3721926640077804]
ニューラルマシン翻訳(NMT)における形態的モデリングは、オープン語彙機械翻訳を実現するための有望なアプローチである。
低リソース環境における複雑な形態をモデル化するためのフレームワークソリューションを提案する。
パブリックドメインのパラレルテキストを用いた英訳であるKinyarwandaについて,提案手法の評価を行った。
論文 参考訳(メタデータ) (2024-04-03T01:31:41Z) - Exploring Tokenization Strategies and Vocabulary Sizes for Enhanced Arabic Language Models [0.0]
本稿では,アラビア語モデルの性能に及ぼすトークン化戦略と語彙サイズの影響について検討する。
本研究は, 語彙サイズがモデルサイズを一定に保ちながら, モデル性能に及ぼす影響を限定的に明らかにした。
論文のレコメンデーションには、方言の課題に対処するためのトークン化戦略の洗練、多様な言語コンテキストにわたるモデルの堅牢性の向上、リッチな方言ベースのアラビア語を含むデータセットの拡大が含まれる。
論文 参考訳(メタデータ) (2024-03-17T07:44:44Z) - Improving Natural Language Inference in Arabic using Transformer Models
and Linguistically Informed Pre-Training [0.34998703934432673]
本稿では,自然言語処理分野におけるアラビア語テキストデータの分類について述べる。
この制限を克服するため、公開リソースから専用のデータセットを作成します。
言語固有モデル (AraBERT) が最先端の多言語アプローチと競合することがわかった。
論文 参考訳(メタデータ) (2023-07-27T07:40:11Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - Improving Massively Multilingual ASR With Auxiliary CTC Objectives [40.10307386370194]
FLEURSは102言語によるオープンASRベンチマークである。
我々は,最近のコネクショニスト時間分類(CTC)研究から着想を得た手法を考察し,モデルが多数の言語を扱えるようにした。
コンバータアーキテクチャを用いた自己教師型モデルを用いた最先端システムでは,相対28.4%CERによるFLEURSの先行研究よりも改善されている。
論文 参考訳(メタデータ) (2023-02-24T18:59:51Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。