論文の概要: Joint Prediction of Monocular Depth and Structure using Planar and
Parallax Geometry
- arxiv url: http://arxiv.org/abs/2207.06351v1
- Date: Wed, 13 Jul 2022 17:04:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-14 16:03:17.418075
- Title: Joint Prediction of Monocular Depth and Structure using Planar and
Parallax Geometry
- Title(参考訳): 平面およびパララックス幾何学を用いた単分子深さと構造の共同予測
- Authors: Hao Xing, Yifan Cao, Maximilian Biber, Mingchuan Zhou, Darius Burschka
- Abstract要約: 教師付き学習深度推定法は、LiDARデータのような高品質な地上構造で訓練すると、優れた性能が得られる。
提案手法は,有望な平面とパララックス幾何学パイプラインの構造情報と深度情報を組み合わせたU-Net教師あり学習ネットワークの構築である。
我々のモデルは細い物体と縁の深さ予測に優れており、構造予測ベースラインと比較して、より頑健に機能する。
- 参考スコア(独自算出の注目度): 4.620624344434533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supervised learning depth estimation methods can achieve good performance
when trained on high-quality ground-truth, like LiDAR data. However, LiDAR can
only generate sparse 3D maps which causes losing information. Obtaining
high-quality ground-truth depth data per pixel is difficult to acquire. In
order to overcome this limitation, we propose a novel approach combining
structure information from a promising Plane and Parallax geometry pipeline
with depth information into a U-Net supervised learning network, which results
in quantitative and qualitative improvement compared to existing popular
learning-based methods. In particular, the model is evaluated on two
large-scale and challenging datasets: KITTI Vision Benchmark and Cityscapes
dataset and achieve the best performance in terms of relative error. Compared
with pure depth supervision models, our model has impressive performance on
depth prediction of thin objects and edges, and compared to structure
prediction baseline, our model performs more robustly.
- Abstract(参考訳): 教師付き学習深度推定法は、LiDARデータのような高品質な地上構造で訓練すると、優れた性能が得られる。
しかし、LiDARは情報を失うようなスパース3Dマップしか生成できない。
画素あたりの地上深度データの取得は困難である。
この限界を克服するため,本研究では,有望平面とパララックス幾何パイプラインの構造情報をu-net教師付き学習ネットワークに結合する新しい手法を提案する。
特に、モデルは、KITTI Vision BenchmarkとCityscapesの2つの大規模かつ困難なデータセットで評価され、相対誤差の観点から最高のパフォーマンスを達成する。
純粋な深度監視モデルと比較して,本モデルは細い物体やエッジの深度予測に優れた性能を示し,構造予測ベースラインと比較して,より堅牢な性能を示す。
関連論文リスト
- DepthSplat: Connecting Gaussian Splatting and Depth [90.06180236292866]
ガウススプラッティングと深さ推定を結合するDepthSplatを提案する。
まず,事前学習した単眼深度特徴を生かして,頑健な多眼深度モデルを提案する。
また,ガウス的スプラッティングは教師なし事前学習の目的として機能することを示す。
論文 参考訳(メタデータ) (2024-10-17T17:59:58Z) - Plane2Depth: Hierarchical Adaptive Plane Guidance for Monocular Depth Estimation [38.81275292687583]
平面情報を適応的に利用し,階層的なフレームワーク内での深度予測を改善するPlane2Depthを提案する。
提案する平面案内深度発生器 (PGDG) では, 現場の平面をソフトにモデル化し, 画素ごとの平面係数を予測するためのプロトタイプとして, 一連の平面クエリを設計する。
提案するアダプティブプレーンクエリアグリゲーション(APGA)モジュールでは,マルチスケール平面特徴のアグリゲーションを改善するために,新たな機能インタラクションアプローチを導入する。
論文 参考訳(メタデータ) (2024-09-04T07:45:06Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
我々は、余分なデータやアノテーションを必要とせずに、幾何学保存深度を予測するためにモデルを訓練する学習フレームワークを提案する。
包括的な実験は、我々のフレームワークの優れた一般化能力を強調します。
我々の革新的な損失関数は、ドメイン固有のスケール・アンド・シフト係数を自律的に復元するモデルを可能にします。
論文 参考訳(メタデータ) (2023-09-18T12:36:39Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
本稿では,計算資源の割り当ての観点から,局所的な点集合体を再考する。
最も単純な柱ベースのモデルは、精度とレイテンシの両方を考慮して驚くほどよく機能することがわかった。
本研究は,3次元物体検出の高性能化のために,詳細な幾何学的モデリングが不可欠である,という一般的な直観に挑戦する。
論文 参考訳(メタデータ) (2023-05-08T17:59:14Z) - Deep Planar Parallax for Monocular Depth Estimation [24.801102342402828]
In-deepth Analysisでは、フロープレトレーニングを利用することで、連続するフレームモデリングのネットワークの利用を最適化できることが明らかにされている。
また,静的なシーン仮定に反する動的オブジェクトを扱うための平面位置埋め込みを提案する。
論文 参考訳(メタデータ) (2023-01-09T06:02:36Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
自己監督型単眼深度推定は静的な場面で顕著な結果を示した。
トレーニングネットワークのマルチビュー整合性の仮定に依存するが、動的オブジェクト領域に違反する。
単一画像の深度を事前に生成するための,外部トレーニング付き単眼深度推定モデルを提案する。
我々のモデルは、高度にダイナミックなシーンのモノクロビデオからトレーニングしても、シャープで正確な深度マップを予測できる。
論文 参考訳(メタデータ) (2022-11-07T16:17:47Z) - DenseLiDAR: A Real-Time Pseudo Dense Depth Guided Depth Completion
Network [3.1447111126464997]
本稿では,DenseLiDARを提案する。
単純な形態的操作から得られた高密度な擬似深度マップを利用してネットワークを誘導する。
我々のモデルは50Hzのフレームレートで最先端の性能を達成することができる。
論文 参考訳(メタデータ) (2021-08-28T14:18:29Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust
Depth Prediction [87.08227378010874]
深度予測における高次3次元幾何学的制約の重要性を示す。
単純な幾何学的制約を強制する損失項を設計することにより、単眼深度推定の精度とロバスト性を大幅に改善する。
The-of-the-art results of learning metric depth on NYU Depth-V2 and KITTI。
論文 参考訳(メタデータ) (2021-03-07T00:08:21Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z) - Towards Better Generalization: Joint Depth-Pose Learning without PoseNet [36.414471128890284]
自己教師型共同深層学習におけるスケール不整合の本質的問題に対処する。
既存の手法の多くは、全ての入力サンプルで一貫した深さとポーズを学習できると仮定している。
本稿では,ネットワーク推定からスケールを明示的に切り離す新しいシステムを提案する。
論文 参考訳(メタデータ) (2020-04-03T00:28:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。