論文の概要: PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds
- arxiv url: http://arxiv.org/abs/2305.04925v1
- Date: Mon, 8 May 2023 17:59:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-09 13:23:26.673005
- Title: PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds
- Title(参考訳): PillarNeXt: LiDARポイントクラウドにおける3Dオブジェクト検出のためのネットワーク設計の再考
- Authors: Jinyu Li, Chenxu Luo, Xiaodong Yang
- Abstract要約: 本稿では,計算資源の割り当ての観点から,局所的な点集合体を再考する。
最も単純な柱ベースのモデルは、精度とレイテンシの両方を考慮して驚くほどよく機能することがわかった。
本研究は,3次元物体検出の高性能化のために,詳細な幾何学的モデリングが不可欠である,という一般的な直観に挑戦する。
- 参考スコア(独自算出の注目度): 29.15589024703907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to deal with the sparse and unstructured raw point clouds, LiDAR
based 3D object detection research mostly focuses on designing dedicated local
point aggregators for fine-grained geometrical modeling. In this paper, we
revisit the local point aggregators from the perspective of allocating
computational resources. We find that the simplest pillar based models perform
surprisingly well considering both accuracy and latency. Additionally, we show
that minimal adaptions from the success of 2D object detection, such as
enlarging receptive field, significantly boost the performance. Extensive
experiments reveal that our pillar based networks with modernized designs in
terms of architecture and training render the state-of-the-art performance on
the two popular benchmarks: Waymo Open Dataset and nuScenes. Our results
challenge the common intuition that the detailed geometry modeling is essential
to achieve high performance for 3D object detection.
- Abstract(参考訳): lidarベースの3dオブジェクト検出研究は主に、細粒度の幾何学的モデリングのための専用の局所的ポイントアグリゲータの設計に焦点を当てている。
本稿では,計算資源の割り当ての観点から,局所的な点集合体を再考する。
最も単純な柱ベースのモデルは、精度とレイテンシの両方を考慮して驚くほどよく機能します。
さらに,受容野の拡大などの2次元物体検出の成功による最小適応が,性能を著しく向上させることを示した。
広範な実験によって、アーキテクチャとトレーニングの観点から現代的な設計の柱ベースのネットワークが、人気のベンチマークであるwaymo open datasetとnuscenesで最先端のパフォーマンスをレンダリングしていることが分かりました。
本研究は,3次元物体検出のための高精度な形状モデリングが不可欠である,という一般的な直観に挑戦する。
関連論文リスト
- AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
本稿では,点雲からの正確な3次元物体検出のための投票型3次元検出器RBGNetフレームワークを提案する。
決定された光線群を用いて物体表面上の点方向の特徴を集約する。
ScanNet V2 と SUN RGB-D による最先端の3D 検出性能を実現する。
論文 参考訳(メタデータ) (2022-04-05T14:42:57Z) - CVFNet: Real-time 3D Object Detection by Learning Cross View Features [11.402076835949824]
CVFNetと呼ばれるリアルタイムビューベースの1段3Dオブジェクト検出器を提案する。
本稿ではまず,複数の段階において,ポイント・アンド・レンジ・ビュー機能を深く統合した新しいポイント・ラウンジ機能融合モジュールを提案する。
次に, 得られた深度視点特徴を鳥の目視に変換する際に, 3次元形状を良好に維持する特別のスライスピラーを設計する。
論文 参考訳(メタデータ) (2022-03-13T06:23:18Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
SASA(Semantics-Augmented Set Abstraction)と呼ばれる新しい集合抽象化手法を提案する。
そこで本研究では, 推定点前景スコアに基づいて, より重要な前景点の維持を支援するセマンティックス誘導点サンプリングアルゴリズムを提案する。
実際には、SASAは、前景オブジェクトに関連する貴重な点を識別し、ポイントベースの3D検出のための特徴学習を改善するのに有効である。
論文 参考訳(メタデータ) (2022-01-06T08:54:47Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - SIENet: Spatial Information Enhancement Network for 3D Object Detection
from Point Cloud [20.84329063509459]
LiDARベースの3Dオブジェクト検出は、自動運転車に大きな影響を与える。
LiDARの固有特性の制限により、センサーから遠く離れた物体において、より少ない点が収集される。
そこで本研究では,SIENetという2段階の3次元物体検出フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T07:45:09Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
本稿では,3次元物体検出におけるコンテキストモデリングのための2種類の自己注意法を提案する。
まず,現状のbev,voxel,ポイントベース検出器にペアワイズ自着機構を組み込む。
次に,ランダムにサンプリングされた位置の変形を学習することにより,最も代表的な特徴のサブセットをサンプリングするセルフアテンション変種を提案する。
論文 参考訳(メタデータ) (2021-01-07T18:30:32Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
動的情報モデリングを用いた新しい3次元オブジェクト検出フレームワークを提案する。
粗い予測は、ボクセルベースの領域提案ネットワークを介して第1段階で生成される。
大規模なnuScenes 3D検出ベンチマークで実験を行った。
論文 参考訳(メタデータ) (2020-07-16T18:27:08Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。