論文の概要: MorphoActivation: Generalizing ReLU activation function by mathematical
morphology
- arxiv url: http://arxiv.org/abs/2207.06413v1
- Date: Wed, 13 Jul 2022 08:47:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 14:49:58.679551
- Title: MorphoActivation: Generalizing ReLU activation function by mathematical
morphology
- Title(参考訳): モルフォ活性化: 数学的形態学によるReLU活性化関数の一般化
- Authors: Santiago Velasco-Forero (CMM), Jes\'us Angulo (CMM)
- Abstract要約: 本稿では、ディープ畳み込みニューラルネットワーク(DCNN)における非線形活性化関数と空間最大プーリングの両方を解析する。
モーフィック表現の文脈において、最大プール作用素と非線形作用素の両方を考慮することにより、活性化関数の一般族が提案される。
実験セクションでは、DCNNによる教師あり学習のための古典的ベンチマークに対するアプローチの有効性を検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper analyses both nonlinear activation functions and spatial
max-pooling for Deep Convolutional Neural Networks (DCNNs) by means of the
algebraic basis of mathematical morphology. Additionally, a general family of
activation functions is proposed by considering both max-pooling and nonlinear
operators in the context of morphological representations. Experimental section
validates the goodness of our approach on classical benchmarks for supervised
learning by DCNN.
- Abstract(参考訳): 本稿では,数値形態学の代数的基礎を用いたディープ畳み込みニューラルネットワーク(DCNN)の非線形アクティベーション関数と空間最大プーリングの両方を解析する。
さらに、マクスプール作用素と非線形作用素の両方を形態素表現の文脈で考慮し、活性化関数の一般的な族を提案する。
DCNNによる教師あり学習のための古典的ベンチマークに対するアプローチの有効性を検証する。
関連論文リスト
- Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
相対表現はゼロショットモデルの縫合に対する確立されたアプローチである。
相対変換において正規化手順を導入し、非等方的再スケーリングや置換に不変となる。
第二に、クラス内のクラスタリングを促進するトポロジカル正規化損失である、微調整された相対表現におけるトポロジカルデシフィケーションの展開を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:09:22Z) - Function-Space Optimality of Neural Architectures With Multivariate
Nonlinearities [30.762063524541638]
我々は、バナッハ空間上の学習問題に対する解集合が、非線形性を持つニューラルアーキテクチャによって完全に特徴づけられることを示す代表者定理を証明した。
我々の結果は、データに基づいてトレーニングされたニューラルネットワークによって学習された関数の規則性に光を当て、実際に見つかったいくつかのアーキテクチャ選択に対する新たな理論的動機を与えました。
論文 参考訳(メタデータ) (2023-10-05T17:13:16Z) - Approximation of Nonlinear Functionals Using Deep ReLU Networks [7.876115370275732]
本稿では,ReLU(rerectified linear unit)アクティベーション関数に関連する機能深部ニューラルネットワークの近似能力について検討する。
さらに,弱規則性条件下での関数型深部ReLUネットワークの近似率を確立する。
論文 参考訳(メタデータ) (2023-04-10T08:10:11Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Sigmoid、ReLU、Tanhなどの非線形活性化関数は、ニューラルネットワーク(NN)において大きな成功を収めた。
サンプルの複雑な非線形特性のため、これらの活性化関数の目的は、元の特徴空間から線形分離可能な特徴空間へサンプルを投影することである。
この現象は、現在の典型的なNNにおいて、すべての特徴がすべての非線形関数によって変換される必要があるかどうかを探求することに興味をそそる。
論文 参考訳(メタデータ) (2022-03-22T13:09:17Z) - Otimizacao de pesos e funcoes de ativacao de redes neurais aplicadas na
previsao de series temporais [0.0]
本稿では,ニューラルネットワークにおける自由パラメータ非対称活性化関数群の利用を提案する。
定義された活性化関数の族は普遍近似定理の要求を満たすことを示す。
ニューラルネットワークの処理ユニット間の接続の重み付けと自由パラメータを用いたこの活性化関数系のグローバル最適化手法を用いる。
論文 参考訳(メタデータ) (2021-07-29T23:32:15Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Learning Deep Morphological Networks with Neural Architecture Search [19.731352645511052]
メタラーニングに基づく形態論的演算子をディープニューラルネットワークに組み込む手法を提案する。
学習したアーキテクチャは、我々の新しい形態的操作が、様々なタスクにおけるDNNのパフォーマンスを著しく向上させることを示す。
論文 参考訳(メタデータ) (2021-06-14T19:19:48Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
本稿では,線形近似ニューラルネットワーク(LANN)を提案する。
ニューラルネットワークのトレーニングプロセスを実験的に検討し、オーバーフィッティングを検出する。
我々は、$L1$と$L2$正規化がモデルの複雑さの増加を抑制することを発見した。
論文 参考訳(メタデータ) (2020-06-16T07:38:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。