論文の概要: Deep Learning Methods for Protein Family Classification on PDB
Sequencing Data
- arxiv url: http://arxiv.org/abs/2207.06678v1
- Date: Thu, 14 Jul 2022 06:11:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-16 02:36:08.844529
- Title: Deep Learning Methods for Protein Family Classification on PDB
Sequencing Data
- Title(参考訳): pdbシーケンシングデータを用いたタンパク質ファミリー分類のための深層学習法
- Authors: Aaron Wang
- Abstract要約: 本稿では,新たな双方向LSTMや畳み込みモデルなどのディープラーニングフレームワークの性能を,広く利用可能なシークエンシングデータ上で実証し比較する。
我々のディープラーニングモデルは従来の機械学習手法よりも優れた性能を示し、畳み込みアーキテクチャは最も印象的な推論性能を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Composed of amino acid chains that influence how they fold and thus dictating
their function and features, proteins are a class of macromolecules that play a
central role in major biological processes and are required for the structure,
function, and regulation of the body's tissues. Understanding protein functions
is vital to the development of therapeutics and precision medicine, and hence
the ability to classify proteins and their functions based on measurable
features is crucial; indeed, the automatic inference of a protein's properties
from its sequence of amino acids, known as its primary structure, remains an
important open problem within the field of bioinformatics, especially given the
recent advancements in sequencing technologies and the extensive number of
known but uncategorized proteins with unknown properties. In this work, we
demonstrate and compare the performance of several deep learning frameworks,
including novel bi-directional LSTM and convolutional models, on widely
available sequencing data from the Protein Data Bank (PDB) of the Research
Collaboratory for Structural Bioinformatics (RCSB), as well as benchmark this
performance against classical machine learning approaches, including k-nearest
neighbors and multinomial regression classifiers, trained on experimental data.
Our results show that our deep learning models deliver superior performance to
classical machine learning methods, with the convolutional architecture
providing the most impressive inference performance.
- Abstract(参考訳): タンパク質は、その折りたたみやその機能や特徴に影響を与えるアミノ酸鎖で構成され、主要な生物学的過程において中心的な役割を果たす高分子の一種であり、身体組織の構造、機能、制御に必須である。
Understanding protein functions is vital to the development of therapeutics and precision medicine, and hence the ability to classify proteins and their functions based on measurable features is crucial; indeed, the automatic inference of a protein's properties from its sequence of amino acids, known as its primary structure, remains an important open problem within the field of bioinformatics, especially given the recent advancements in sequencing technologies and the extensive number of known but uncategorized proteins with unknown properties.
本研究では,構造バイオインフォマティクス研究協力(rcsb)のタンパク質データバンク(pdb)から広く入手可能なシークエンシングデータに対して,新しい双方向lstmおよび畳み込みモデルを含む,いくつかのディープラーニングフレームワークのパフォーマンスを実証・比較し,k-nearest近傍や多項回帰分類器などの古典的機械学習アプローチに対するパフォーマンスのベンチマークを行った。
我々のディープラーニングモデルは従来の機械学習手法よりも優れた性能を示し、畳み込みアーキテクチャは最も印象的な推論性能を提供する。
関連論文リスト
- Computational Protein Science in the Era of Large Language Models (LLMs) [54.35488233989787]
計算タンパク質科学(Computational protein science)は、タンパク質配列構造-機能パラダイムにおける知識を明らかにすること、および応用を開発することを目的としている。
最近、言語モデル (Language Models, PLM) は、前例のない言語処理と一般化能力のために、AIのマイルストーンとして登場した。
論文 参考訳(メタデータ) (2025-01-17T16:21:18Z) - A Survey of Deep Learning Methods in Protein Bioinformatics and its Impact on Protein Design [3.5897534810405403]
ディープラーニングはコンピュータビジョンや自然言語処理などの分野において顕著な性能を示している。
近年、タンパク質配列のデータ豊富な領域に応用され、大きな成功を収めている。
ディープラーニングによって達成された性能改善は、タンパク質バイオインフォマティクスの分野での新たな可能性を開く。
論文 参考訳(メタデータ) (2025-01-02T05:21:34Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - CPE-Pro: A Structure-Sensitive Deep Learning Method for Protein Representation and Origin Evaluation [7.161099050722313]
タンパク質構造評価用結晶対予測学習モデル(CPE-Pro)を開発した。
CPE-Proはタンパク質の構造情報を学習し、構造間の差異を捉え、4つのデータクラスの正確なトレーサビリティを実現する。
我々は Foldseek を用いてタンパク質構造を「構造配列」にエンコードし、タンパク質構造配列言語モデル SSLM を訓練した。
論文 参考訳(メタデータ) (2024-10-21T02:21:56Z) - Structure-Enhanced Protein Instruction Tuning: Towards General-Purpose Protein Understanding [43.811432723460534]
本稿では,このギャップを埋めるために,構造強化タンパク質インストラクションチューニング(SEPIT)フレームワークを紹介する。
提案手法では, 構造的知識を付加するため, 構造的知識を付加し, これらの拡張された pLM を大規模言語モデル (LLM) に接続し, タンパク質の理解を創出する。
我々はこれまでで最大かつ最も包括的なタンパク質命令データセットを構築し、汎用タンパク質理解モデルの訓練と評価を可能にした。
論文 参考訳(メタデータ) (2024-10-04T16:02:50Z) - NaNa and MiGu: Semantic Data Augmentation Techniques to Enhance Protein Classification in Graph Neural Networks [60.48306899271866]
本稿では,背骨化学および側鎖生物物理情報をタンパク質分類タスクに組み込む新しい意味データ拡張手法を提案する。
具体的には, 分子生物学的, 二次構造, 化学結合, およびタンパク質のイオン特性を活用し, 分類作業を容易にする。
論文 参考訳(メタデータ) (2024-03-21T13:27:57Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Binary classification of proteins by a Machine Learning approach [0.0]
本稿では,タンパク質データバンクに含まれるタンパク質の記述に基づいてアミノ酸のタンパク質鎖を分類するシステムを提案する。
それぞれのタンパク質は、XML形式でのファイルの化学・物理・幾何学的特性で完全に記述されている。
この研究の目的は、大量のデータの収集と管理のためのディープラーニング機械を設計し、そのアミノ酸配列の分類への応用を通じてそれを検証することである。
論文 参考訳(メタデータ) (2021-11-03T01:58:16Z) - PersGNN: Applying Topological Data Analysis and Geometric Deep Learning
to Structure-Based Protein Function Prediction [0.07340017786387766]
本研究では,タンパク質構造を分離し,タンパク質データバンク内のタンパク質の機能的アノテーションを作成する。
本稿では,グラフ表現学習とトポロジカルデータ解析を組み合わせた,エンドツーエンドのトレーニング可能なディープラーニングモデルPersGNNを提案する。
論文 参考訳(メタデータ) (2020-10-30T02:24:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。