SHREC 2022 Track on Online Detection of Heterogeneous Gestures
- URL: http://arxiv.org/abs/2207.06706v1
- Date: Thu, 14 Jul 2022 07:24:02 GMT
- Title: SHREC 2022 Track on Online Detection of Heterogeneous Gestures
- Authors: Ariel Caputo, Marco Emporio, Andrea Giachetti, Marco Cristani, Guido
Borghi, Andrea D'Eusanio, Minh-Quan Le, Hai-Dang Nguyen, Minh-Triet Tran, F.
Ambellan, M. Hanik, E. Nava-Yazdani, C. von Tycowicz
- Abstract summary: This paper presents the outcomes of a contest organized to evaluate methods for the online recognition of heterogeneous gestures from sequences of 3D hand poses.
The dataset features continuous sequences of hand tracking data where the gestures are interleaved with non-significant motions.
The evaluation is based not only on the detection performances but also on the latency and the false positives, making it possible to understand the feasibility of practical interaction tools.
- Score: 11.447098172408111
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents the outcomes of a contest organized to evaluate methods
for the online recognition of heterogeneous gestures from sequences of 3D hand
poses. The task is the detection of gestures belonging to a dictionary of 16
classes characterized by different pose and motion features. The dataset
features continuous sequences of hand tracking data where the gestures are
interleaved with non-significant motions. The data have been captured using the
Hololens 2 finger tracking system in a realistic use-case of mixed reality
interaction. The evaluation is based not only on the detection performances but
also on the latency and the false positives, making it possible to understand
the feasibility of practical interaction tools based on the algorithms
proposed. The outcomes of the contest's evaluation demonstrate the necessity of
further research to reduce recognition errors, while the computational cost of
the algorithms proposed is sufficiently low.
Related papers
- Exploring the Performance of Continuous-Time Dynamic Link Prediction Algorithms [14.82820088479196]
Dynamic Link Prediction (DLP) addresses the prediction of future links in evolving networks.
In this work, we contribute tools to perform such a comprehensive evaluation.
We describe an exhaustive taxonomy of negative sampling methods that can be used at evaluation time.
arXiv Detail & Related papers (2024-05-27T14:03:28Z) - Towards Learning Discrete Representations via Self-Supervision for
Wearables-Based Human Activity Recognition [7.086647707011785]
Human activity recognition (HAR) in wearable computing is typically based on direct processing of sensor data.
Recent advancements in Vector Quantization (VQ) to wearables applications enables us to directly learn a mapping between short spans of sensor data and a codebook of vectors.
This work presents a proof-of-concept for demonstrating how effective discrete representations can be derived.
arXiv Detail & Related papers (2023-06-01T19:49:43Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Skeleton-Based Mutually Assisted Interacted Object Localization and
Human Action Recognition [111.87412719773889]
We propose a joint learning framework for "interacted object localization" and "human action recognition" based on skeleton data.
Our method achieves the best or competitive performance with the state-of-the-art methods for human action recognition.
arXiv Detail & Related papers (2021-10-28T10:09:34Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications.
We propose a few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class.
Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions.
arXiv Detail & Related papers (2021-08-15T02:21:01Z) - SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild [62.450907796261646]
Recognition of hand gestures can be performed directly from the stream of hand skeletons estimated by software.
Despite the recent advancements in gesture and action recognition from skeletons, it is unclear how well the current state-of-the-art techniques can perform in a real-world scenario.
This paper presents the results of the SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild contest.
arXiv Detail & Related papers (2021-06-21T10:57:49Z) - Progressive Spatio-Temporal Bilinear Network with Monte Carlo Dropout
for Landmark-based Facial Expression Recognition with Uncertainty Estimation [93.73198973454944]
The performance of our method is evaluated on three widely used datasets.
It is comparable to that of video-based state-of-the-art methods while it has much less complexity.
arXiv Detail & Related papers (2021-06-08T13:40:30Z) - Learning Dynamics via Graph Neural Networks for Human Pose Estimation
and Tracking [98.91894395941766]
We propose a novel online approach to learning the pose dynamics, which are independent of pose detections in current fame.
Specifically, we derive this prediction of dynamics through a graph neural network(GNN) that explicitly accounts for both spatial-temporal and visual information.
Experiments on PoseTrack 2017 and PoseTrack 2018 datasets demonstrate that the proposed method achieves results superior to the state of the art on both human pose estimation and tracking tasks.
arXiv Detail & Related papers (2021-06-07T16:36:50Z) - Understanding the hand-gestures using Convolutional Neural Networks and
Generative Adversial Networks [0.0]
The system consists of three modules: real time hand tracking, training gesture and gesture recognition using Convolutional Neural Networks.
It has been tested to the vocabulary of 36 gestures including the alphabets and digits, and results effectiveness of the approach.
arXiv Detail & Related papers (2020-11-10T02:20:43Z) - Learning to associate detections for real-time multiple object tracking [0.0]
This study investigates the use of artificial neural networks to learn a similarity function that can be used among detections.
The proposed tracker matches the results obtained by state-of-the-art methods, it has run 58% faster than a recent and similar method, used as baseline.
arXiv Detail & Related papers (2020-07-12T17:08:41Z) - Sensor Data for Human Activity Recognition: Feature Representation and
Benchmarking [27.061240686613182]
The field of Human Activity Recognition (HAR) focuses on obtaining and analysing data captured from monitoring devices (e.g. sensors)
We address the issue of accurately recognising human activities using different Machine Learning (ML) techniques.
arXiv Detail & Related papers (2020-05-15T00:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.