Towards Learning Discrete Representations via Self-Supervision for
Wearables-Based Human Activity Recognition
- URL: http://arxiv.org/abs/2306.01108v1
- Date: Thu, 1 Jun 2023 19:49:43 GMT
- Title: Towards Learning Discrete Representations via Self-Supervision for
Wearables-Based Human Activity Recognition
- Authors: Harish Haresamudram, Irfan Essa, Thomas Ploetz
- Abstract summary: Human activity recognition (HAR) in wearable computing is typically based on direct processing of sensor data.
Recent advancements in Vector Quantization (VQ) to wearables applications enables us to directly learn a mapping between short spans of sensor data and a codebook of vectors.
This work presents a proof-of-concept for demonstrating how effective discrete representations can be derived.
- Score: 7.086647707011785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human activity recognition (HAR) in wearable computing is typically based on
direct processing of sensor data. Sensor readings are translated into
representations, either derived through dedicated preprocessing, or integrated
into end-to-end learning. Independent of their origin, for the vast majority of
contemporary HAR, those representations are typically continuous in nature.
That has not always been the case. In the early days of HAR, discretization
approaches have been explored - primarily motivated by the desire to minimize
computational requirements, but also with a view on applications beyond mere
recognition, such as, activity discovery, fingerprinting, or large-scale
search. Those traditional discretization approaches, however, suffer from
substantial loss in precision and resolution in the resulting representations
with detrimental effects on downstream tasks. Times have changed and in this
paper we propose a return to discretized representations. We adopt and apply
recent advancements in Vector Quantization (VQ) to wearables applications,
which enables us to directly learn a mapping between short spans of sensor data
and a codebook of vectors, resulting in recognition performance that is
generally on par with their contemporary, continuous counterparts - sometimes
surpassing them. Therefore, this work presents a proof-of-concept for
demonstrating how effective discrete representations can be derived, enabling
applications beyond mere activity classification but also opening up the field
to advanced tools for the analysis of symbolic sequences, as they are known,
for example, from domains such as natural language processing. Based on an
extensive experimental evaluation on a suite of wearables-based benchmark HAR
tasks, we demonstrate the potential of our learned discretization scheme and
discuss how discretized sensor data analysis can lead to substantial changes in
HAR.
Related papers
- Cross-Domain HAR: Few Shot Transfer Learning for Human Activity
Recognition [0.2944538605197902]
We present an approach for economic use of publicly available labeled HAR datasets for effective transfer learning.
We introduce a novel transfer learning framework, Cross-Domain HAR, which follows the teacher-student self-training paradigm.
We demonstrate the effectiveness of our approach for practically relevant few shot activity recognition scenarios.
arXiv Detail & Related papers (2023-10-22T19:13:25Z) - DIVERSIFY: A General Framework for Time Series Out-of-distribution
Detection and Generalization [58.704753031608625]
Time series is one of the most challenging modalities in machine learning research.
OOD detection and generalization on time series tend to suffer due to its non-stationary property.
We propose DIVERSIFY, a framework for OOD detection and generalization on dynamic distributions of time series.
arXiv Detail & Related papers (2023-08-04T12:27:11Z) - Self-Supervised Learning via Maximum Entropy Coding [57.56570417545023]
We propose Maximum Entropy Coding (MEC) as a principled objective that explicitly optimize on the structure of the representation.
MEC learns a more generalizable representation than previous methods based on specific pretext tasks.
It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking.
arXiv Detail & Related papers (2022-10-20T17:58:30Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
We propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED)
In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition.
arXiv Detail & Related papers (2022-09-14T11:08:48Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
We propose a novel attention network, named self-modulating attention, that models the complex and non-linearly evolving dynamic user preferences.
We empirically demonstrate the effectiveness of our method on top-N sequential recommendation tasks, and the results on three large-scale real-world datasets show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-30T03:54:11Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
We introduce a simple and effective method for learning VAEs with controllable biases by using an intermediary set of latent variables.
In particular, it allows us to impose desired properties like sparsity or clustering on learned representations.
We show that this, in turn, allows InteL-VAEs to learn both better generative models and representations.
arXiv Detail & Related papers (2021-06-25T16:34:05Z) - Contrastive Predictive Coding for Human Activity Recognition [5.766384728949437]
We introduce the Contrastive Predictive Coding framework to human activity recognition, which captures the long-term temporal structure of sensor data streams.
CPC-based pre-training is self-supervised, and the resulting learned representations can be integrated into standard activity chains.
It leads to significantly improved recognition performance when only small amounts of labeled training data are available.
arXiv Detail & Related papers (2020-12-09T21:44:36Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
We propose a self-supervised representation learning method for sequence data, based on the intuition that useful representations of sequence data should exhibit a simple structure in the latent space.
We encourage this latent structure by maximizing an estimate of predictive information of latent feature sequences, which is the mutual information between past and future windows at each time step.
We demonstrate that our method recovers the latent space of noisy dynamical systems, extracts predictive features for forecasting tasks, and improves automatic speech recognition when used to pretrain the encoder on large amounts of unlabeled data.
arXiv Detail & Related papers (2020-10-07T03:34:01Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Sensor Data for Human Activity Recognition: Feature Representation and
Benchmarking [27.061240686613182]
The field of Human Activity Recognition (HAR) focuses on obtaining and analysing data captured from monitoring devices (e.g. sensors)
We address the issue of accurately recognising human activities using different Machine Learning (ML) techniques.
arXiv Detail & Related papers (2020-05-15T00:46:55Z) - Human Activity Recognition from Wearable Sensor Data Using
Self-Attention [2.9023633922848586]
We present a self-attention based neural network model for activity recognition from body-worn sensor data.
We performed experiments on four popular publicly available HAR datasets: PAMAP2, Opportunity, Skoda and USC-HAD.
Our model achieve significant performance improvement over recent state-of-the-art models in both benchmark test subjects and Leave-one-out-subject evaluation.
arXiv Detail & Related papers (2020-03-17T14:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.