論文の概要: RSD-GAN: Regularized Sobolev Defense GAN Against Speech-to-Text
Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2207.06858v1
- Date: Thu, 14 Jul 2022 12:22:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 20:16:57.770911
- Title: RSD-GAN: Regularized Sobolev Defense GAN Against Speech-to-Text
Adversarial Attacks
- Title(参考訳): RSD-GAN: 音声対テキスト攻撃に対する正規化ソボレフ防衛GAN
- Authors: Mohammad Esmaeilpour, Nourhene Chaalia, Patrick Cardinal
- Abstract要約: 本稿では,音声からテキストへの書き起こしシステムの性能に挑戦するために開発された,新たな合成ベース防御アルゴリズムを提案する。
本アルゴリズムは,ソボレフに基づくGANを実装し,生成モデル全体の機能を効果的に制御する新しい正規化器を提案する。
- 参考スコア(独自算出の注目度): 9.868221447090853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a new synthesis-based defense algorithm for
counteracting with a varieties of adversarial attacks developed for challenging
the performance of the cutting-edge speech-to-text transcription systems. Our
algorithm implements a Sobolev-based GAN and proposes a novel regularizer for
effectively controlling over the functionality of the entire generative model,
particularly the discriminator network during training. Our achieved results
upon carrying out numerous experiments on the victim DeepSpeech, Kaldi, and
Lingvo speech transcription systems corroborate the remarkable performance of
our defense approach against a comprehensive range of targeted and non-targeted
adversarial attacks.
- Abstract(参考訳): 本稿では,最先端音声テキスト転写システムの性能に挑戦するために開発された,様々な敵攻撃に対処する新しい合成ベース防御アルゴリズムを提案する。
本アルゴリズムは,sobolevベースのganを実装し,生成モデル,特に識別器ネットワークの機能を効果的に制御する新しい正規化器を提案する。
被害者のdeepspeech, kaldi, lingvo音声転写システムに対する多数の実験を行った結果, 攻撃対象および非標的攻撃の包括的範囲に対して, 防御的アプローチの顕著な性能が一致した。
関連論文リスト
- Rethinking Targeted Adversarial Attacks For Neural Machine Translation [56.10484905098989]
本報告では,NMTが標的とする敵攻撃に対して,信頼性の高い攻撃結果をもたらす可能性のある新たな設定を提案する。
新しい設定では、敵の例を作成するためのTWGA(Targeted Word Gradient Adversarial Attack)手法を提案する。
実験の結果,提案手法はNMTシステムに対する敵攻撃に対して忠実な攻撃効果をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-07T10:16:06Z) - DiffuseDef: Improved Robustness to Adversarial Attacks [38.34642687239535]
敵の攻撃は、事前訓練された言語モデルを使って構築されたシステムにとって重要な課題となる。
本稿では,拡散層をエンコーダと分類器のデノイザとして組み込んだDiffuseDefを提案する。
推測中、敵対的隠蔽状態はまずサンプルノイズと組み合わせられ、次に反復的に復調され、最後にアンサンブルされ、堅牢なテキスト表現が生成される。
論文 参考訳(メタデータ) (2024-06-28T22:36:17Z) - Adversarial Text Purification: A Large Language Model Approach for
Defense [25.041109219049442]
敵の浄化は、敵の攻撃に対して分類器を保護するための防御機構である。
そこで本稿では,大規模言語モデルの生成能力を生かした,新たな逆文清浄法を提案する。
提案手法は,様々な分類器に対して顕著な性能を示し,攻撃時の精度を平均65%以上向上させる。
論文 参考訳(メタデータ) (2024-02-05T02:36:41Z) - A Classification-Guided Approach for Adversarial Attacks against Neural
Machine Translation [66.58025084857556]
我々は,分類器によって誘導されるNMTシステムに対する新たな敵攻撃フレームワークであるACTを紹介する。
本攻撃では,翻訳が本来の翻訳と異なるクラスに属する意味保存的敵の例を作成することを目的としている。
攻撃に対するNMTモデルの堅牢性を評価するため,既存のブラックボックス単語置換攻撃の強化を提案する。
論文 参考訳(メタデータ) (2023-08-29T12:12:53Z) - Characterizing the adversarial vulnerability of speech self-supervised
learning [95.03389072594243]
我々は,ゼロ知識とリミテッド知識の両方の敵からの攻撃の下で,そのようなパラダイムの敵対的脆弱性を調査するための最初の試みを行う。
実験結果から, SUPERB が提案するパラダイムは, 限られた知識を持つ敵に対して脆弱であることが示唆された。
論文 参考訳(メタデータ) (2021-11-08T08:44:04Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
ディープニューラルネットワークは、意図的に構築された敵の例に対して脆弱である。
ニューラルNLPモデルに対する敵対的単語置換攻撃を防御する様々な方法が提案されている。
論文 参考訳(メタデータ) (2021-08-29T08:11:36Z) - Towards Robust Speech-to-Text Adversarial Attack [78.5097679815944]
本稿では,DeepSpeech,Kaldi,Lingvoなど,最先端の音声テキストシステムに対する新たな逆アルゴリズムを提案する。
本手法は, 逆最適化定式化の従来の歪み条件の拡張を開発することに基づいている。
元のサンプルと反対のサンプルの分布の差を測定するこの測定値の最小化は、正統な音声記録のサブスペースに非常に近い作成信号に寄与する。
論文 参考訳(メタデータ) (2021-03-15T01:51:41Z) - Class-Conditional Defense GAN Against End-to-End Speech Attacks [82.21746840893658]
本稿では,DeepSpeech や Lingvo といった先進的な音声テキストシステムを騙すために開発された,エンドツーエンドの敵対攻撃に対する新しいアプローチを提案する。
従来の防御手法とは異なり、提案手法は入力信号のオートエンコードのような低レベル変換を直接利用しない。
我々の防衛GANは、単語誤り率と文レベルの認識精度において、従来の防衛アルゴリズムよりもかなり優れています。
論文 参考訳(メタデータ) (2020-10-22T00:02:02Z) - Defense of Word-level Adversarial Attacks via Random Substitution
Encoding [0.5964792400314836]
コンピュータビジョンタスクにおけるディープニューラルネットワークに対する敵対的な攻撃は、モデルを保護するための多くの新しい技術を生み出しました。
近年、自然言語処理(NLP)タスクの深層モデルに対する単語レベルの敵対攻撃は、例えば、感情分類ニューラルネットワークを騙して誤った判断を下すなど、強力な力を示している。
本稿ではランダム置換(Random Substitution RSE)という,ニューラルネットワークのトレーニングプロセスにランダム置換を導入する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-01T15:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。