Spatiotemporal Propagation Learning for Network-Wide Flight Delay
Prediction
- URL: http://arxiv.org/abs/2207.06959v1
- Date: Thu, 14 Jul 2022 14:30:59 GMT
- Title: Spatiotemporal Propagation Learning for Network-Wide Flight Delay
Prediction
- Authors: Yuankai Wu, Hongyu Yang, Yi Lin, Hong Liu
- Abstract summary: We propose Spatiotemporal Network (STP), a space-time separable convolutional network, which is novel capturing temporal dependency modeling.
From the aspect of relation of temporal dependency modeling, we propose a multi-head self-attentional that can be learned end-to-end and explicitly reason multiple kinds of temporal dependency delay time.
- Score: 17.632313431251383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Demystifying the delay propagation mechanisms among multiple airports is
fundamental to precise and interpretable delay prediction, which is crucial
during decision-making for all aviation industry stakeholders. The principal
challenge lies in effectively leveraging the spatiotemporal dependencies and
exogenous factors related to the delay propagation. However, previous works
only consider limited spatiotemporal patterns with few factors. To promote more
comprehensive propagation modeling for delay prediction, we propose
SpatioTemporal Propagation Network (STPN), a space-time separable graph
convolutional network, which is novel in spatiotemporal dependency capturing.
From the aspect of spatial relation modeling, we propose a multi-graph
convolution model considering both geographic proximity and airline schedule.
From the aspect of temporal dependency capturing, we propose a multi-head
self-attentional mechanism that can be learned end-to-end and explicitly reason
multiple kinds of temporal dependency of delay time series. We show that the
joint spatial and temporal learning models yield a sum of the Kronecker
product, which factors the spatiotemporal dependence into the sum of several
spatial and temporal adjacency matrices. By this means, STPN allows cross-talk
of spatial and temporal factors for modeling delay propagation. Furthermore, a
squeeze and excitation module is added to each layer of STPN to boost
meaningful spatiotemporal features. To this end, we apply STPN to multi-step
ahead arrival and departure delay prediction in large-scale airport networks.
To validate the effectiveness of our model, we experiment with two real-world
delay datasets, including U.S and China flight delays; and we show that STPN
outperforms state-of-the-art methods. In addition, counterfactuals produced by
STPN show that it learns explainable delay propagation patterns.
Related papers
- Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
Predicting backbone-temporal traffic flow presents challenges due to complex interactions between temporal factors.
Existing approaches address these dimensions in isolation, neglecting their critical interdependencies.
In this paper, we introduce Sanonymous-Temporal Unitized Unitized Cell (ASTUC), a unified framework designed to capture both spatial and temporal dependencies.
arXiv Detail & Related papers (2024-11-14T07:34:31Z) - Unveiling Delay Effects in Traffic Forecasting: A Perspective from
Spatial-Temporal Delay Differential Equations [20.174094418301245]
Traffic flow forecasting is a fundamental research issue for transportation planning and management.
In recent years, Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) have achieved great success in capturing spatial-temporal correlations for traffic flow forecasting.
However, two non-ignorable issues haven't been well solved: 1) The message passing in GNNs is immediate, while in reality the spatial message interactions among neighboring nodes can be delayed.
arXiv Detail & Related papers (2024-02-02T08:55:23Z) - A Decoupled Spatio-Temporal Framework for Skeleton-based Action
Segmentation [89.86345494602642]
Existing methods are limited in weak-temporal modeling capability.
We propose a Decoupled Scoupled Framework (DeST) to address the issues.
DeST significantly outperforms current state-of-the-art methods with less computational complexity.
arXiv Detail & Related papers (2023-12-10T09:11:39Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Spatial-Temporal Graph Convolutional Gated Recurrent Network for Traffic
Forecasting [3.9761027576939414]
We propose a novel framework for traffic forecasting, named Spatial-Temporal Graph Convolutional Gated Recurrent Network (STGCGRN)
We design an attention module to capture long-term dependency by mining periodic information in traffic data.
Experiments on four datasets demonstrate the superior performance of our model.
arXiv Detail & Related papers (2022-10-06T08:02:20Z) - Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting [22.421667339552467]
Spatial-temporal forecasting has attracted tremendous attention in a wide range of applications, and traffic flow prediction is a canonical and typical example.
Existing works typically utilize shallow graph convolution networks (GNNs) and temporal extracting modules to model spatial and temporal dependencies respectively.
We propose Spatial-Temporal Graph Ordinary Differential Equation Networks (STGODE), which captures spatial-temporal dynamics through a tensor-based ordinary differential equation (ODE)
We evaluate our model on multiple real-world traffic datasets and superior performance is achieved over state-of-the-art baselines.
arXiv Detail & Related papers (2021-06-24T11:48:45Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.