論文の概要: Learning Discriminative Representation via Metric Learning for
Imbalanced Medical Image Classification
- arxiv url: http://arxiv.org/abs/2207.06975v1
- Date: Thu, 14 Jul 2022 14:57:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 14:17:14.956573
- Title: Learning Discriminative Representation via Metric Learning for
Imbalanced Medical Image Classification
- Title(参考訳): 不均衡医用画像分類のためのメトリックラーニングによる学習識別表現
- Authors: Chenghua Zeng, Huijuan Lu, Kanghao Chen, Ruixuan Wang, and Wei-Shi
Zheng
- Abstract要約: 本稿では,特徴抽出器がより識別的な特徴表現を抽出するのを助けるために,2段階フレームワークの第1段階にメトリック学習を組み込むことを提案する。
主に3つの医用画像データセットを用いて実験したところ、提案手法は既存の1段階と2段階のアプローチより一貫して優れていた。
- 参考スコア(独自算出の注目度): 52.94051907952536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data imbalance between common and rare diseases during model training often
causes intelligent diagnosis systems to have biased predictions towards common
diseases. The state-of-the-art approaches apply a two-stage learning framework
to alleviate the class-imbalance issue, where the first stage focuses on
training of a general feature extractor and the second stage focuses on
fine-tuning the classifier head for class rebalancing. However, existing
two-stage approaches do not consider the fine-grained property between
different diseases, often causing the first stage less effective for medical
image classification than for natural image classification tasks. In this
study, we propose embedding metric learning into the first stage of the
two-stage framework specially to help the feature extractor learn to extract
more discriminative feature representations. Extensive experiments mainly on
three medical image datasets show that the proposed approach consistently
outperforms existing onestage and two-stage approaches, suggesting that metric
learning can be used as an effective plug-in component in the two-stage
framework for fine-grained class-imbalanced image classification tasks.
- Abstract(参考訳): モデルトレーニング中の一般的な疾患と稀な疾患のデータの不均衡は、知的診断システムに共通の疾患に対する予測のバイアスを引き起こすことが多い。
state-of-the-artアプローチでは,クラス不均衡問題を解決するために2段階学習フレームワークを適用し,第1段階は一般特徴抽出器のトレーニングに,第2段階はクラス再バランスのための分類器ヘッドの微調整に重点を置いている。
しかし、既存の2段階のアプローチでは、異なる疾患間のきめ細かな性質を考慮せず、1段階目は自然画像の分類よりも医療画像の分類に効果を欠くことが多い。
本研究では,特徴抽出器がより識別的な特徴表現を抽出するのを助けるために,2段階フレームワークの第1段階にメトリック学習を組み込むことを提案する。
3つの医用画像データセットを主とする大規模な実験により,提案手法は既存の1段階と2段階のアプローチを一貫して上回り,2段階の分類作業において,メートル法学習を効果的なプラグインコンポーネントとして活用できることが示唆された。
関連論文リスト
- SPLAL: Similarity-based pseudo-labeling with alignment loss for
semi-supervised medical image classification [11.435826510575879]
半教師付き学習(SSL)メソッドはラベル付きデータとラベルなしデータの両方を活用することで課題を軽減することができる。
医用画像分類のためのSSL法では,(1)ラベルなしデータセットの画像に対する信頼性の高い擬似ラベルの推定,(2)クラス不均衡によるバイアスの低減という2つの課題に対処する必要がある。
本稿では,これらの課題を効果的に解決する新しいSSLアプローチであるSPLALを提案する。
論文 参考訳(メタデータ) (2023-07-10T14:53:24Z) - DiffMIC: Dual-Guidance Diffusion Network for Medical Image
Classification [32.67098520984195]
一般医用画像分類のための拡散モデル(DiffMIC)を提案する。
実験の結果,DiffMICは最先端の手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2023-03-19T09:15:45Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - ProCo: Prototype-aware Contrastive Learning for Long-tailed Medical
Image Classification [12.399428395862639]
我々は、長い尾の医療不均衡問題に取り組むために、対照的な学習を採用する。
全体的なフレームワーク、すなわちPrototype-aware Contrastive Learning (ProCo)は、単一のステージパイプラインとして統合されている。
提案手法は既存の最先端手法よりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2022-09-01T02:24:16Z) - Medical Knowledge-Guided Deep Learning for Imbalanced Medical Image
Classification [3.9745217005532183]
モデルの性能を高めるために,医療知識に基づく一級分類手法を提案する。
不均衡画像分類のための深層学習に基づく一クラス分類パイプラインを設計する。
6つの最先端手法と比較して,優れたモデル性能を示す。
論文 参考訳(メタデータ) (2021-11-20T16:14:19Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - A New Semi-supervised Learning Benchmark for Classifying View and
Diagnosing Aortic Stenosis from Echocardiograms [4.956777496509955]
心エコー(心電図)の解釈に関連する2つの課題に対する半教師付きアプローチを評価するためのベンチマークデータセットを開発した。
我々は,MixMatchと呼ばれる最先端の手法が,両タスクのホールドアウト精度において有望なゲインを達成できることを見出した。
我々は患者レベルの診断予測を追求し、多様なビュータイプの数百の画像に集約する必要がある。
論文 参考訳(メタデータ) (2021-07-30T21:08:12Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。