論文の概要: Current Trends in Deep Learning for Earth Observation: An Open-source
Benchmark Arena for Image Classification
- arxiv url: http://arxiv.org/abs/2207.07189v1
- Date: Thu, 14 Jul 2022 20:18:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-19 01:06:19.537992
- Title: Current Trends in Deep Learning for Earth Observation: An Open-source
Benchmark Arena for Image Classification
- Title(参考訳): 地球観測のための深層学習の最近の動向:画像分類のためのオープンソースベンチマークアリーナ
- Authors: Ivica Dimitrovski, Ivan Kitanovski, Dragi Kocev, Nikola Simidjievski
- Abstract要約: AiTLAS: Benchmark Arena"は、画像分類のための最先端のディープラーニングアプローチを評価するための、オープンソースのベンチマークフレームワークである。
本稿では,9種類の最先端アーキテクチャから派生した400以上のモデルについて,包括的比較分析を行った。
- 参考スコア(独自算出の注目度): 7.511257876007757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present 'AiTLAS: Benchmark Arena' -- an open-source benchmark framework
for evaluating state-of-the-art deep learning approaches for image
classification in Earth Observation (EO). To this end, we present a
comprehensive comparative analysis of more than 400 models derived from nine
different state-of-the-art architectures, and compare them to a variety of
multi-class and multi-label classification tasks from 22 datasets with
different sizes and properties. In addition to models trained entirely on these
datasets, we also benchmark models trained in the context of transfer learning,
leveraging pre-trained model variants, as it is typically performed in
practice. All presented approaches are general and can be easily extended to
many other remote sensing image classification tasks not considered in this
study. To ensure reproducibility and facilitate better usability and further
developments, all of the experimental resources including the trained models,
model configurations and processing details of the datasets (with their
corresponding splits used for training and evaluating the models) are publicly
available on the repository: https://github.com/biasvariancelabs/aitlas-arena.
- Abstract(参考訳): aitlas: benchmark arena' - 地球観測における画像分類のための最先端のディープラーニングアプローチを評価するためのオープンソースのベンチマークフレームワーク。
この目的のために,9つの異なる最先端アーキテクチャから派生した400以上のモデルを総合的に比較分析し,異なるサイズと特性を持つ22のデータセットから,様々なマルチクラスおよびマルチラベルの分類タスクと比較する。
これらのデータセットで完全にトレーニングされたモデルに加えて、私たちは転送学習のコンテキストでトレーニングされたモデルをベンチマークします。
提案手法はすべて汎用的であり,本研究では考慮されていない多くのリモートセンシング画像分類タスクに容易に拡張できる。
再現性を保証し、より良いユーザビリティとさらなる開発を容易にするため、トレーニングされたモデル、モデル構成、データセットの処理詳細(モデルのトレーニングと評価に使用するスプリットを含む)を含む実験的なリソースはすべて、リポジトリで公開されている。
関連論文リスト
- Hierarchical Multi-Label Classification with Missing Information for Benthic Habitat Imagery [1.6492989697868894]
複数のレベルのアノテーション情報が存在するシナリオでHMLトレーニングを行う能力を示す。
その結果,局所的・局所的なベントニック・サイエンス・プロジェクトで典型的な,より小さなワンホット・イメージ・ラベル・データセットを使用する場合,イメージネット上で事前学習したドメイン内ベントニック・データの大規模な収集に対して,自己スーパービジョンで事前学習したモデルの方が優れていることがわかった。
論文 参考訳(メタデータ) (2024-09-10T16:15:01Z) - Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
低撮影能力のためのコントラスト学習、クラスタリング、マスク付き画像モデリングなど、さまざまな自己教師付きプレテキストタスクについて検討する。
マスク画像モデリングとクラスタリングの両方をプリテキストタスクとして含むフレームワークを導入する。
実規模データセット上でモデルをテストした場合,マルチクラス分類,マルチラベル分類,セマンティックセマンティックセグメンテーションにおける性能向上を示す。
論文 参考訳(メタデータ) (2024-06-25T10:56:03Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
事前訓練されたモデルの任意のペアリングに対して、一方のモデルは他方では利用できない重要なデータコンテキストを抽出する。
このような「補的」な知識を,性能劣化を伴わずに,あるモデルから別のモデルへ伝達できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-10-26T17:59:46Z) - Fine-Grained ImageNet Classification in the Wild [0.0]
ロバストネステストは、典型的なモデル評価段階で気づかないいくつかの脆弱性やバイアスを明らかにすることができる。
本研究では,階層的知識の助けを借りて,密接に関連するカテゴリのきめ細かい分類を行う。
論文 参考訳(メタデータ) (2023-03-04T12:25:07Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
雑音アノテータから基底真理ラベルを学習するための完全ベイズ的枠組みを提案する。
我々のフレームワークは、ラベル分布上の生成的ベイズソフトクラスタリングモデルを古典的なDavidとSkeneのジョイントアノテータデータモデルに分解することでスケーラビリティを保証する。
論文 参考訳(メタデータ) (2021-06-20T02:15:20Z) - Benchmarking Representation Learning for Natural World Image Collections [13.918304838054846]
iNat2021とNeWTの2つの新しい自然界視覚分類データセットを紹介します。
前者は市民科学アプリケーションinaturalistのユーザによってアップロードされた10k種の2.7m画像である。
標準種別を超越した難解な自然世界バイナリ分類タスク群において,表現学習アルゴリズムの性能ベンチマークを行った。
我々は,imagenet と inat2021 を監督することなく訓練された特徴抽出器の総合的な解析を行い,様々なタスクを通して異なる学習特徴の長所と短所について考察した。
論文 参考訳(メタデータ) (2021-03-30T16:41:49Z) - Deep Semi-Supervised Learning for Time Series Classification [1.096924880299061]
画像と時系列の分類から,最先端の深層半教師付きモデルの転送可能性について検討する。
これらの変換された半教師付きモデルは、強い教師付き、半教師付き、自己監督型の選択肢よりも大きな性能向上を示す。
論文 参考訳(メタデータ) (2021-02-06T17:40:56Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Improving QA Generalization by Concurrent Modeling of Multiple Biases [61.597362592536896]
既存のNLPデータセットには、モデルが容易に活用できる様々なバイアスが含まれており、対応する評価セット上で高いパフォーマンスを達成することができる。
本稿では、トレーニングデータにおける複数のバイアスの同時モデリングにより、ドメイン内およびドメイン外両方のデータセットのパフォーマンスを改善するための一般的なフレームワークを提案する。
我々は,様々な領域の学習データと異なる強度の複数のバイアスを持つ抽出的質問応答の枠組みを広く評価した。
論文 参考訳(メタデータ) (2020-10-07T11:18:49Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。