論文の概要: Deep Semi-Supervised Learning for Time Series Classification
- arxiv url: http://arxiv.org/abs/2102.03622v1
- Date: Sat, 6 Feb 2021 17:40:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-09 17:16:52.106571
- Title: Deep Semi-Supervised Learning for Time Series Classification
- Title(参考訳): 時系列分類のためのDeep Semi-Supervised Learning
- Authors: Jann Goschenhofer, Rasmus Hvingelby, David R\"ugamer, Janek Thomas,
Moritz Wagner, Bernd Bischl
- Abstract要約: 画像と時系列の分類から,最先端の深層半教師付きモデルの転送可能性について検討する。
これらの変換された半教師付きモデルは、強い教師付き、半教師付き、自己監督型の選択肢よりも大きな性能向上を示す。
- 参考スコア(独自算出の注目度): 1.096924880299061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Semi-supervised learning has gained much attention in computer vision
on image data, yet limited research exists on its applicability in the time
series domain. In this work, we investigate the transferability of
state-of-the-art deep semi-supervised models from image to time series
classification. We discuss the necessary model adaptations, in particular an
appropriate model backbone architecture and the use of tailored data
augmentation strategies. Based on these adaptations, we explore the potential
of deep semi-supervised learning in the context of time series classification
by evaluating our methods on large public time series classification problems
with varying amounts of labelled samples. We perform extensive comparisons
under a decidedly realistic and appropriate evaluation scheme with a unified
reimplementation of all algorithms considered, which is yet lacking in the
field. We find that these transferred semi-supervised models show significant
performance gains over strong supervised, semi-supervised and self-supervised
alternatives, especially for scenarios with very few labelled samples.
- Abstract(参考訳): 半教師付き学習は画像データに対するコンピュータビジョンにおいて注目されているが、時系列領域での応用性については限定的な研究がある。
本研究では,現在最先端の半教師付きモデルの画像・時系列分類における転送可能性について検討する。
必要なモデル適応、特に適切なモデルバックボーンアーキテクチャ、および調整済みデータ拡張戦略の使用について論じる。
これらの適応に基づいて,ラベル付きサンプルの量が異なる大規模公開時系列分類問題に対して,提案手法を評価し,時系列分類の文脈における深い半教師付き学習の可能性を検討する。
我々は,検討対象のアルゴリズムを統一的に再実装した,決定的に現実的で適切な評価手法の下で,広範囲な比較を行う。
特にラベル付きサンプルの少ないシナリオでは,転送された半教師付きモデルが,強い教師付き,半教師付き,自己教師付きモデルに比べて有意な性能向上を示すことが判明した。
関連論文リスト
- GM-DF: Generalized Multi-Scenario Deepfake Detection [49.072106087564144]
既存の偽造検出は、通常、単一のドメインでのトレーニングモデルのパラダイムに従う。
本稿では,複数の顔偽造検出データセットを共同で訓練した場合のディープフェイク検出モデルの一般化能力について詳しく検討する。
論文 参考訳(メタデータ) (2024-06-28T17:42:08Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Semi-Supervised Learning for hyperspectral images by non parametrically
predicting view assignment [25.198550162904713]
ハイパースペクトル画像(HSI)分類は、画像中のスペクトル情報が高いため、現在、多くの勢いを増している。
近年,ラベル付きサンプルを最小限に抑えたディープラーニングモデルを効果的に訓練するために,ラベル付きサンプルも自己教師付きおよび半教師付き設定で活用されている。
本研究では,半教師付き学習の概念を利用して,モデルの識別的自己教師型事前学習を支援する。
論文 参考訳(メタデータ) (2023-06-19T14:13:56Z) - Concept Drift and Long-Tailed Distribution in Fine-Grained Visual Categorization: Benchmark and Method [84.68818879525568]
コンセプションドリフトとLong-Tailed Distributionデータセットを提案する。
インスタンスの特徴は時間によって異なり、長い尾の分布を示す傾向がある。
本稿ではCDLTに関連する学習課題に対処する機能組換えフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-04T12:42:45Z) - Quantifying Quality of Class-Conditional Generative Models in
Time-Series Domain [4.219228636765818]
Inception Time Score(ITS)とFrechet Inception Time Distance(FITD)を導入し、時系列領域におけるクラス条件生成モデルの質的性能を評価する。
提案した指標の識別能力を調べるため,80種類のデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-14T08:13:20Z) - Current Trends in Deep Learning for Earth Observation: An Open-source
Benchmark Arena for Image Classification [7.511257876007757]
AiTLAS: Benchmark Arena"は、画像分類のための最先端のディープラーニングアプローチを評価するための、オープンソースのベンチマークフレームワークである。
本稿では,9種類の最先端アーキテクチャから派生した400以上のモデルについて,包括的比較分析を行った。
論文 参考訳(メタデータ) (2022-07-14T20:18:58Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Semi-supervised Deep Learning for Image Classification with Distribution
Mismatch: A Survey [1.5469452301122175]
ディープラーニングモデルは、予測モデルをトレーニングするためにラベル付き観測の豊富な部分に依存します。
ラベル付きデータ観測を収集することは高価であり、ディープラーニングモデルの使用は理想的ではない。
多くの状況では、異なる非競合データソースが利用可能である。
これにより、ラベル付きデータセットと非ラベル付きデータセットの間にかなりの分散ミスマッチが発生するリスクが生じる。
論文 参考訳(メタデータ) (2022-03-01T02:46:00Z) - Neural Contextual Anomaly Detection for Time Series [7.523820334642732]
本稿では,時系列における異常検出のためのフレームワークであるNeural Contextual Anomaly Detection (NCAD)を紹介する。
NCADは教師なし設定から教師なし設定までシームレスにスケールする。
我々は,提案手法が最先端の性能を得るための標準ベンチマークデータセットを実証的に実証した。
論文 参考訳(メタデータ) (2021-07-16T04:33:53Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
オブジェクト検出とセグメンテーションの方法は、トレーニングのための大規模インスタンスレベルのアノテーションに依存します。
本稿では,直感的かつ統一的な半教師付きモデルを提案する。
論文 参考訳(メタデータ) (2020-06-12T22:45:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。